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Abstract— This paper addresses the problem of acquiring
a hierarchically structured robotic skill in a nonstationary
environment. This is achieved through a combination of learn-
ing primitive strategies from observation of an expert, and
autonomously synthesising composite strategies from that basis.
Both aspects of this problem are approached from a game
theoretic viewpoint, building on prior work in the area of
multiplicative weights learning algorithms. The utility of this
procedure is demonstrated through simulation experiments
motivated by the problem of autonomous driving. We show
that this procedure allows the agent to come to terms with two
forms of uncertainty in the world – continually varying goals
(due to oncoming traffic) and nonstationarity of optimisation
criteria (e.g., driven by changing navigability of the road). We
argue that this type of factored task specification and learning
is a necessary ingredient for robust autonomous behaviour in
a “large-world” setting.

I. INTRODUCTION

Autonomous robots must operate in a “large-world” set-
ting where information is necessarily incomplete and it
is infeasible for the designers to ex ante anticipate all
contingencies that the agent might face. It is generally
believed that many such behaviours admit a hierarchical or
layered structure [1], [2] and many successful examples of
complex engineered systems have leveraged this feature [3].
To the extent that a truly autonomous system must learn
to acquire and adapt its behaviours online, there is a need
for algorithmic techniques that enable efficient learning of
such hierarchical strategies – from a combination of expert
advice and direct experience. It is generally acknowledged
that humans learn better by means of a curriculum [4], as a
fast and safe method of skill acquisition [5]. The question
for us is that of enabling machines to accomplish the same,
to provide a measure of robustness to noise and an ability to
handle larger scale changes due to nonstationarities.

The former problem, that of learning from an expert, has
been studied by a number of research groups in recent years.
An excellent state-of-the-art example is the apprenticeship
learning algorithm of Abbeel and Ng [6]. In this setting,
one utilizes an expert, with access to a sophisticated control
policy for the desired task, to provide the target for a learning
agent. The apprentice agent may be equipped with a set
of elementary actions and is required to approximate the
expert’s policy using that basis.
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This notion of imitation learning actually has a long and
rich history. For instance, the problem has been looked at
from a social and psychologically inspired angle in [7], [8]
and [9]. Schaal et al. [10] discuss several fundamental issues
in imitation learning, such as the use of action primitives.
Billard et al. [11] use Hidden Markov Models and focus
on the determination of what to imitate in order to learn
to trace the shapes of letters. Inamura et al. [12] also use
Hidden Markov Models to learn various motions. A majority
of these approaches pose the problem of imitation learning
as the statistical learning problem of approximating the
behaviour of the expert, or perhaps by posing the problem
as one of learning the reward function in a reinforcement
learning setting [13]. However, in realistic scenarios, expert
demonstrations must necessarily be incomplete. Moreover,
one is interested in acquiring skills in a large-world sense that
includes, in addition to the basic policy for task execution
with robustness to noise, variations for handling unantici-
pated contingencies in a nonstationary world. This is the
focus of the work presented in this paper.

The problem of operating in a stochastic environment has
been previously considered in the form of robust control
of Markov Decision Processes [14] which considers the
problem in a game theoretic sense, as we also do. How-
ever, the complexity of such solution methods can easily
render them intractable in real-world problems. Instead, we
adopt a factored, hierarchical approach to defining skills.
Accordingly, we also take a somewhat different approach to
learning the solutions to the games. This problem has also
been considered by detecting a changing context in which an
agent is operating, and changing policies appropriately [15].
Again this approach develops flat, non-hierarchical strategies,
and does not address the reuse of primitive policies as we
would like to be able to do.

The apprenticeship learning procedure in [6] begins to
address the issue of task variations by learning the reward
function (i.e., inverse reinforcement learning) so that subse-
quent variations may be handled separately by the agent.
This work was extended in [16] to address the issue of
disturbances more directly, by adopting a game theoretic
approach. They propose the Multiplicative Weights Algo-
rithm for Apprenticeship Learning (MWAL), which poses
the policy approximation problem in a minimax setting –
allowing the agent to find the best approximation (within
a class of primitives that may well differ from that of the
expert) to the demonstrated behaviour that is the target.

We take a layered approach to skill acquisition. Firstly,
we utilise expert demonstration to learn a set of primitive



skills that will form the basis for subsequent autonomous
learning. In this paper, we use the MWAL algorithm to
solve this aspect of the problem, although we note that
other choices would not impact the subsequent steps. With
this basis, we pose the problem of action synthesis in a
nonstationary world as one of playing a game against nature,
where nature picks variations of the problem (e.g., different
optimality criteria – such as changes in navigability of the
road) and the agent must learn to synthesize the optimal
response in terms of a mixed strategy over previously learned
primitives. We again solve this second stage problem using
a multiplicative weights algorithm. In this setting, the role
of the expert is to bootstrap the learning agent from a state
of complete ignorance of the skill to be learned, to one of
partial knowledge from which complex skills are learnable.

The structure of this paper is as follows. Section II
describes the basic MWAL procedure and our modified
algorithm that addresses the hierarchical skills setting. The
performance of this algorithm is demonstrated through em-
pirical experiments described in section III. This experiment
is a modified version of the driving task from Abbeel and
Ng [6] – elaborated in order to incorporate two different
sources of task variations (changing terrain variability, im-
pacting the cost structure of the optimisation, and changes
within the oncoming traffic which forms the basic task). The
main result is the demonstration that the learning agent has
efficiently acquired a composite strategy for operation in a
nonstationary scenario consisting of nontrivial variations of
the task that the expert has not demonstrated before.

Although most of the discussion in this paper is focussed
on this specific application scenario, of vehicle navigation,
the underlying algorithmic ideas are more generally applica-
ble to problems of robot motion [17]. A general description
of robot motion involves the generation of trajectories over an
abstract surface, i.e., the configuration space. Motion in this
space is dictated by laws of motion that impact the structure
of the metric on this space, such that different local regions
correspond to different levels of ‘navigability’. Many realistic
robotics problems, e.g., full-body humanoid behaviours, are
such that relatively small changes in the external environment
could result in much larger changes in this underlying cost
structure – this is what makes generalisation of acquired
skills hard. Moreover, the goal of robotics is for robots to
perform interesting manoeuvres, under a variety of different
circumstances and in response to changing goals. So, this is a
necessary and intrinsic feature of all problems in robotics. A
higher-dimensional extension of our driving scenario to this
abstract space would still result in similar algorithmic ques-
tions and, we believe, could be solved as natural extensions
to the procedure outlined in this paper.

II. ARCHITECTURE OF THE SKILL ACQUISITION
FRAMEWORK

We view the skill acquisition process as a game between
the learning agent and an adversarial environment. In a
game theoretic sense, this corresponds to an optimisation
of the expected rewards received by two interacting agents.

This is done by changing weighted distributions over the
different strategies which can be used by the players. The
optimal mixing of strategies for both players in this way is
known as a Nash equilibrium. We assume the environment
is controlled by an unknown process – nature. The learning
agent is required to synthesise complex manoeuvres, from a
basis of simple ones, which are learned from an expert, as
it is unrealistic to assume that the expert could demonstrate
behaviour for every conceivable scenario, particular if the
environment is dynamic, contains other agents, or is prone
to noise.

Our proposed skill acquisition framework of primitive
strategy learning, followed by composite strategy synthesis
is shown in Figure 1. The synthesis is by regret minimisation
[18] to find a Nash equilibrium between the agent’s policies,
and adversarial changes to the cost structure presented by
the environment.

Fig. 1. The proposed skill acquisition framework. Observing and learning
from an expert allows the agent to acquire primitive skills. Once a library
of these primitive skills has been assembled, they can be synthesised to
generate novel variants of the skill which are suitable for conditions that
may differ from those initially demonstrated by the expert.

The composite strategy is the equilibrium in the game
between the player, who is looking for a mixed strategy
defined over primitives, and nature which is altering the
cost/reward structure of the optimal control/dynamic game
problem – while, the entire time, there is also the variation
in the goal or target with which the agent is working.
In general, the game theoretic formulation allows one to
be more sophisticated about modelling the structure of the
adversarial changes than alternative approaches that may,
e.g., collapse the unknowns into a (stationary) latent variable
or partially observable state. Such formulations also allow us
to draw on a rich literature on learning in the presence of
adversaries that need not be fully modelled, e.g., see [19].

While we use regret minimisation for solving these games,
we note that this is merely a tool which could be swapped
out for others, such as a dynamic programming [14], based
on computational or other considerations. However, the no-
tion of mixture distributions over strategies allows us more
flexibility in expressing composite strategies.

A. Learning Primitive Strategies

The objective of the agent is to learn a policy π(s, a)
which maps states to a probability distribution over the
actions in each state. The problem of learning such a policy



as it is posed here is one of reinforcement learning. However,
in this case the true reward function R∗(s) is unknown,
and instead the learning agent has a vector of features φ :
S 7→ [−1, 1]k which describes the desirability of particular
aspects of a state. The true reward function is assumed to
be a linear combination of these features R∗(s) = w∗ · φ(s)
where w∗ ∈ <k is an unknown weight vector.

This weight vector can be learned in a number of ways.
Here, we use the MWAL algorithm [16]. This approach
defines a feature expectations vector as the expected, cu-
mulative, discounted feature values of a policy π as µ(π) =
E[

∑∞
t=0 γ

tφ(st)|π,Θ, D]. Given an expert’s policy πE , the
goal is to find a policy π for that agent, such that V (π) ≥
V (πE) − ε, where V (π) = E[

∑∞
t=0 γ

tR∗(st)|π,Θ, D] is
the value of a policy π on the MDP M , and thus V (π) =
w∗ · µ(π).

The MWAL algorithm views the decision making process
as a two player zero-sum game, where the maximising player
is the learning agent selecting a distribution over the policies,
and the minimising player is the environment which selects
the reward function through the values of w. The agent
wishes to find a mixed policy ψ to maximise V (ψ)−V (πE)
with unknown and potentially worst-case choice of w. This
optimisation against a worst case choice of w represents the
fact that the true underlying behaviour of the environment is
unknown, and the results of the agent’s interactions with the
environment are approximated by the feature vectors. As the
apprentice learns exclusively from the feature expectations
of the expert µE , the skill acquisition of the apprentice is
independent of not only the control policy used by the expert,
but also its state and action space. The apprentice may thus
only have an approximation of the actions available to the
expert, yet still be able to learn the demonstrated skill. This
problem is posed as a game, represented as

v∗ = max
ψ∈Ψ

min
w
wTGψ (1)

where G(i, j) = µj(i) − µE(i), µE = µ(πE), µj = µ(πj)
for πj the jth stationary policy, and µ(i) is the ith component
of µ.

The MWAL Algorithm (Alg. 1) solves this game using
the regret minimisation procedure of iteratively adjusting
the weights w, using a multiplicative weights algorithm for
solving large games [20] and then finding an optimal policy
ψ for the current weights using an on-policy Monte Carlo
control algorithm [21].

The output of this algorithm is a mixed policy, using which
the agent can perform almost as well as, if not better than,
the expert on the given task and domain, in terms of the
reward function composed of the feature vectors.

B. Learning Composite Strategies
The composite strategy synthesis problem involves a

game, where the agent is to maximise the reward gained
from the MDP in novel task instances given by nature. As
the behaviour of the environment is unknown, optimisation
is against possible worst-case instances of the game, as
specified by the combination of goals and reward structure.

Algorithm 1: The MWAL Algorithm (from [16])
Input: An MDP M , and an estimate of the feature

expectations of the expert, µ̂E
Output: A mixed policy ψ̄ = {π̂(t)} for all t
begin

β ←−
(
1 +

√
2 ln k
T

)−1

W(1)(i)←− 1 for all i = 1, . . . , k
G(i, µ)←− ((1− γ)(µ(i)− µ̂E(i)) + 2)/4
for t = 1, . . . , T do

w(t)(i)←− normalised W(t)(i) for all i
Compute π̂(t) w.r.t. R(s) = w(t) · φ(s)
Estimate µ̂(t) ≈ µ(π̂(t))
W(t+1)(i)←−W(t)(i)βG(i,µ̂(t)) for all i

end
ψ̄ ←− {π̂(t)} for all t with probability 1

T
return mixed policy ψ̄

end

Consider a two-player repeated matrix game G where
the agent is the row player aiming to maximise its reward
in using its skill in the presence of the column player,
nature. The actions of the agent are the primitive policies
learned in Algorithm 1, Ψ = {ψ1, ψ2, . . . , ψN}, and those
of nature are Q = {Q1, Q2, . . . , QM}. The set Q consists
of behaviours which could be executed by the environment,
such as structural changes to the world or movements made
by strategic adversaries. The value of the game matrix for
using policies (ψi, Qj) is G(i, j) and is dependent on the
parameters of the new scenario. The required solution is a
Nash equilibrium (ψ∗, Q∗) [22].

This mixed strategy equilibrium is found using regret
minimisation by means of a multiplicative weights algorithm
[16], [20]. The Strategy Composition Algorithm is shown in
Algorithm 2. This differs from Algorithm 1 in the way we
compute G. E[R(P,Q)] is the expected reward of policy P
in the presence of nature’s policy Q. So the value of the
game is computed as a normalised difference between the
game values obtained by the current mixed policy, and any
of the primitive policies. This allows the weighting to favour
the more successful of these policies.

The algorithm starts with a mixed policy consisting of a
uniform distribution over the primitive policies, and uses an
iterative procedure to update this distribution by multiplica-
tively allocating more weight to the policies which perform
better, as determined by the game value. The output is a
mixed policy consisting of a distribution over the primitive
policy set Ψ giving an equilibrium strategy.

This composed strategy ψ̃ is a linear combination of the
policies in Ψ. Assume strategy ψi selects an action aj in state
sk with probability pikj , and the probability of being in state
sk under policy ψi is pik. Then, given a final mixed strategy
weighting w(T+1) = {w1, w2, . . . , wN} with

∑
i wi = 1, the

policy ψ̃ would choose action aj in state sk with probability
p̃kj =

∑
i wip

i
kjp

i
k. The weights are biased towards the

policies that achieve a higher expected reward. Using regret



Algorithm 2: The Strategy Composition Algorithm

Input: An MDP M̃ , and a set of primitive strategies
Ψ = {ψ1, ψ2, . . . , ψN}

Output: A mixed policy ψ̃ = w ·Ψ
begin

β ←−
(
1 +

√
2 lnN
T

)−1

w(1)(i)←− 1
N for all i = 1, . . . , N

for t = 1, . . . , T do
ψ̃ = w(t) ·Ψ
G(Ψ, ψ̃,Q)←−
((E[R(ψ̃,Q)]− E[R(Ψ,Q)]) + 1)/2
W(i)←− w(t)(i)βG(ψi,ψ̃,Q) for all i
w(t+1)(i)←− W(i)∑

j
W(j)

for all i = 1, . . . , N

end
return mixed policy ψ̃ = w(T+1) ·Ψ

end

minimisation, Algorithm 2 thus learns to rely more heavily
on the strategies which generate higher rewards on this
unseen MDP. We note that this probability is difficult to
compute analytically, but is approximated by convergence
of the algorithm, which ultimately results in a probability
distribution over the actions in every state.

An alternative to this approach would have been to create
a distribution over possible world states, estimate the current
state given sensory evidence and apply suitable policies.
However, we assume much less a priori knowledge of
contingencies and a more severe level of on-line variations
where direct state estimation from limited data would be
problematic.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments were run on a vehicle navigation domain,
of a car learning to navigate through traffic on a multi-lane
one-way road. All other traffic moves at a fixed speed, slower
than the agent. The other cars do not exhibit any complicated
behaviour such as changing lanes. The road is discretised
by car length, so the road is a two-dimensional grid, where
the length is the number of car lengths, and the width is the
number of lanes. The road is either paved or not at each point,
with a high and low reward for using such a portion of the
road respectively. This could be generalised for intermediate
levels of navigability.

There are two different sources of randomness encountered
by the agent. The first is the layout of the terrain over
which the agent drives, which is a parameter corresponding
to different road conditions (equivalent to the cost function in
an optimal control problem). The second is other cars on the
road, acting as variations/adversarial disturbances to the basic
driving forward task, generated by nature by means of some
unknown process. The agent must learn to drive optimally on
a given terrain in these adversarial traffic conditions, where

optimality is defined by its attempts to maximise time spent
on the paved sections of the road whilst avoiding collisions.

The avoidance actions, of moving to the left or the right,
taken by the agent are dependent only on the cars in some
finite horizon. If a collision with a car is imminent, it is
irrelevant to the agent whether or not there are other cars
behind that car. Thus only the distance to the closest car in
each lane is recorded.

The expert navigates the road using a set of if-then rules
with some additional random effects. This could just as easily
have been an optimal controller, or a human controller.

The learning agent is presented with a basis of scenarios
on which to learn behaviours from the expert, to then
synthesise them to form strategies for unseen terrains. The
basis was selected as a set of intuitive road shapes, but is by
no means an ‘optimal’ basis for all eventualities. In general,
we claim that it is unrealistic to expect that a complete and
comprehensive basis for all complex scenarios that could be
encountered in a skill could be enumerated. The set of basis
roads is shown in Figure 2. Let these basis roads be denoted
R1 through R8.

Fig. 2. (a) An example set up of the road navigation problem, with three
of five lanes paved [6]. Note, the grass areas are unpaved lanes. (b) The
set of basis roads used in the experiments, all sized 5 × 5: each consists
of five lanes, of five car lengths each. The dark areas depict unfavourable
‘unpaved’ regions, and the light areas show the ‘paved’ regions of higher
reward.

B. Results

The primitive strategy learning stage involves learning
optimal strategies for performing a skill in a known environ-
ment from the observation of the performance of an expert. In
each iteration, the starting location for the agent was drawn
uniformly from the five lanes.

An example of the first experiment is depicted in Figure
3. In this case it was obviously not possible for even the
expert to avoid both collisions and leaving the paved lanes
as there were two separated single lanes. Thus, although the
vast majority of time is spent in lanes 2 and 4, all of the other
three lanes were marginally used, in order to avoid collisions.
The agent learned a very similar distribution to the expert,
although the number of collisions was slightly higher, as
the Monte Carlo policy iteration uses soft policies, meaning



that a small chance of choosing an alternate policy over the
currently determined best one remains. This is because a
collision and deviating from the road are considered equally
bad.

Fig. 3. Primitive Policy for R3. (a) primitive road on which the apprentice
is being trained: a split road. (b) the six features for that policy (µ(π))
where the first five attributes correspond to the usage of each lane, and the
sixth is a lack of collisions. (c) the lane use statistics and collisions of the
final trained policy when being executed for 100 iterations on that road.

Figure 4 demonstrates results of synthesising primitive
strategies into composite policies, as a game between the
learning agent and nature. The actions available to the
learning agent are the policies from the basis terrains. The
car generation policies of nature, Q, are randomly selected
at each time step from a set of predefined policies, such as
“generate a car on a random lane”, “generate a car on a
random paved lane” or “generate two cars”. The value of a
game between these two players is the difference of the sums
of their feature expectations on that terrain. This provides a
scalar value for the game as G(ψ,Q) for the agent using a
strategy ψ and the environment using strategy Q.

Fig. 4. New Scenario Experiment. (a) the layout of the road. (b) change in
game values over the course of 1,000 iterations of the experiment. (c) lane
usage statistics at the final iteration: the five lanes are indicated by attributes
1 through 5, and attribute 6 shows the number of collisions. (d) the weights
assigned to each element of the basis for constructing the final policy.

The roads are divided into regions, which are 5×5 patches,

i.e. sections of road consisting of five lanes, each of five car
lengths. This provides the algorithm with a predefined finite
horizon for implementing a particular mixture of strategies.

Regions 1 and 3 are similar in shape, and this is recognised
by the algorithm which devises a similar mixture of policies
for these two regions. The fact that region 2 has unpaved
areas only at the four corners means there is only limited
scope for learning, reflected in the fact that there is only a
very gradual increase in the game value. The improvement
is more marked in the blue and red graphs for regions 1 and
3 – the areas with considerable narrowing.

Another example of the composite strategy synthesis is
shown in Figure 5, as a long meandering road. Again,
performance in every region improves with more iterations.
Many interesting features can be observed in the composite
strategy, such as the fact that regions 1 and 3 rely heavily
on the policy from R4, while regions 2 and 4 use the policy
from R5. This corresponds to the road repeatedly alternating
between swinging to the left and to the right.

Fig. 5. New Scenario Extended Experiment. (a) the layout of the road. (b)
change in game values over the course of 1,000 iterations of the experiment.
(c) lane usage statistics at the final iteration: the five lanes are indicated by
attributes 1 through 5, and attribute 6 shows the number of collisions. (d)
the weights assigned to each element of the basis for constructing the final
policy.

C. Assessment

The performance of the synthesised strategies was as-
sessed as follows: when running a policy on a road, two
averages were generated – the average number of times the
policy deviated from paved road per time step (the accuracy),
and the average number of collisions per time step. Both
the full contingent of eight primitive basis policies, and the
composite policy trained specifically for that road were run
on each of the eleven roads in Figure 6. The average accuracy
and collisions per time step were calculated for each policy.

Figure 7 plots the accuracy of the nine policies, as well as
the average of the eight primitive policies. As can be seen,
the mixed composite policy acts as an approximate bound on
the performance of the primitive policies, and is considerably
better in accuracy than the average of the primitives. This



Fig. 6. Experiment Road Set. The first five are short templates, sized
10× 5. Roads (f) to (i) are medium sized at 15× 5, and roads (j) and (k)
are long roads, of length 30 and 45 respectively.

shows that the composite strategy is consistently among the
candidates for most accurate policy.

Fig. 7. Policy accuracy over 4,500 time steps. The x-axis represents the
different roads sorted by increasing length. As these are deviations from the
paved section, lower values are better.

The shorter roads show the composite policy to perform
better than the majority of the primitive policies, the medium
roads show a similar accuracy between the composite and
primitive policies, and as the roads lengthen, the composite
policies improve compared to the primitives and ultimately
outperform them. The reason is that shorter road templates
are more likely to closely match one of the primitive roads.
If one of these primitive policies outperforms the other prim-
itives on both regions of a two-region road, the composite
would learn to be based predominantly on that policy, and
may still be outperformed by that policy. A longer road
decreases the chance of one of the basis policies performing
well continuously, providing the composite policy with an
opportunity to draw on elements of different components of
the basis at various times for improved results.

The second performance metric is the average number of
collisions per time step, displayed in Figure 8. This figure
shows three ‘bands’ of results.

The primitives in the ‘lower’ band are policies correspond-
ing to R1, R2, R4 and R5. These are the ‘broad’ policies,
having two or more adjacent paved lanes, meaning the policy
is less likely to have to leave the road to avoid a collision.
As collisions and deviating from the paved road are equally

Fig. 8. Policy collisions over 4,500 time steps. The x-axis represents the
different roads sorted by increasing length. Lower values are better.

undesirable, these policies will tend to have fewer collisions
as it is easier for them to avoid collisions without incurring
terrain-based costs. Conversely, the policies contributing to
the ‘higher’ band are those corresponding to R3, R6, R7
and R8. These are the ‘narrow’ policies, not consisting of
segments of several adjacent lanes. Avoiding collisions is
likely to involve leaving the paved areas of road and incurring
penalties. Consequently, the number of collisions is higher
for these policies.

The composite policy lies between these bands. The mar-
gin between the ‘higher’ and ‘lower’ band is small and the
number of collisions of the composite policy is bounded by
the primitive policies. Clearly there are trade-offs between
accuracy and collisions in the creation of the policies, and is
a consequence of the fact that neither property is indicated
to the agent to be better or worse.

The task to be completed is arbitrary, as no assumptions
are made other than that the expert has some (not necessarily
optimal) strategy for performing that task. Repeated learning
of a skill in different scenarios with the Multiplicative
Weights for Apprenticeship Learning (MWAL) Algorithm
establishes a basis of strategies. A combination of these is
learned, to give a control policy for performing that skill
in a new setting with arbitrary disturbance processes. The
two phases of this algorithm provide a mechanism whereby
the learning agent is guided through the acquisition of a
basic set of skills by a teaching agent, and then extrapolates
these skills to more sophisticated settings with an unknown
adversarial environment.

IV. DISCUSSION AND CONCLUSIONS

This work is motivated by the desire to create autonomous
agents that can synthesise near-optimal actions in a non-
stationary world – involving variations in both the goals
and the cost structure of the optimal control/dynamic game
problem – seeded by a certain level of expert advice in
the form of demonstrations in the same domain. With this



in mind, we have presented a procedure that combines the
notion of apprenticeship learning (or inverse reinforcement
learning) with the notion of action synthesis by solving a
game against nature (using a multiplicative weights proce-
dure). Our experimental results demonstrate our claims in
the domain of vehicle navigation, but this concept of skill
synthesis under adversarial conditions could be easily lifted
to higher dimensions.

This is a first step in a program of research aimed at
understanding the process of continual skill acquisition in
an open-ended world. The need for this sort of flexibility
and resilience has been noted by a number of researchers,
e.g., [23]. However, oftentimes, discussions of robustness
are focussed on variations within the robot system. Our
focus, in current and future work in this direction, is on
coming to terms with variations in the external world (in
terms of robustness to noise, structural changes in the world,
and strategic adversaries) which is sometimes a much larger
class, requiring different notions and models of interaction
and strategy.
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