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Abstract

Acquiring new skills is an ability which would be very useful for a robot to possess.

One conceivable method whereby a robot could learn new skills is if a teacher with

expert knowledge of those skills could demonstrate these skills to the learning robot, in

a variety of different settings. What is required would be that the robot does not merely

learn to mimic the teacher exactly, as the teacher would be unable to demonstrate the

skill in every possible state of the world. Instead the robot should be equipped with

some robust method for adapting the learned skill to new situations.

The research presented in this document embarks down a path towards solving this

problem. Drawing on previous work from the fields of apprenticeship learning and

reinforcement learning, an algorithm is presented for teaching an agent a new skill.

This algorithm consists of two phases: the first in which the robot learns primitive

skills from an expert, and the second which is a mechanism for composing these skills

to provide strategies for successfully using the skill in unseen situations. This two

phase solution is inspired by curriculum learning, and allows the agent to construct

structured strategies in a hierarchical framework.

The learning task is posed as a two-player game of the learning agent against distur-

bance processes generated by the environment or nature. By doing so, an equilibrium

can be found using regret minimisation techniques to find an optimal mixture of the

basis strategies into a composite strategy for a new scenario.

A detailed example is provided, where the learning agent is required to learn how to

navigate a busy multi-lane road of various shapes and sizes. The results demonstrate

that the agent is able to successfully learn the primitive strategies from the expert.

Then, in a variety of experiments, it is shown that the second phase of the algorithm

can reconstruct parts of the basis that are present in new examples, as well as adapt

the learned behaviours to totally unseen terrains, in a robust and flexible manner. By

doing this, the agent shows an ability to synthesise its previously acquired knowledge

in novel ways to overcome unpredicted challenges.
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Chapter 1

Introduction

Robots are becoming increasingly ubiquitous in society as they are adopted for an ever

growing number of tasks. However, the question remains as to how a robot may learn

a wide variety of actions without the need for them to be hard-coded. Having only

hard-coded skills on a robot is not only very limiting to its operational capabilities, but

also requires considerable time investment on the part of the developers. Moreover, it

may be the case that the actions required to perform some task are very similar to those

needed for a second task. If a robot is capable of completing the first task, it should

have some process whereby it can utilise and adapt this skill to a different scenario.

One possible solution to these challenges, and indeed an important ability gener-

ally, would be if a robot could learn by demonstration. That is the ability for the robot

to observe an external agent such as a human or another robot perform some task, and

then using those observations in some way learn to perform that same task. This is a

form of social learning, and an important aspect of what one may consider intelligent

behaviour. Such processes can be observed in humans as well as many other creatures.

An advantage of this approach is that no overhead need be incurred in the teaching

process from the point of view of the teaching agent, which may be performing the

taught actions as part of some larger routine. As a result, a robot capable of learn-

ing behaviours in such a way is considerably more autonomous than one which can-

not. Furthermore, the learning agent would hope to learn the control policies from the

teacher, rather than the exact positioning of each component of its system. This is also

advantageous because the student robot could be expected to have different physical

attributes to the teacher, which implies that the simple approach of directly replicating

each small change in the teacher’s configuration would be inappropriate. In this way,

the robot could be considered to have gained a more abstract description of how to

1



Chapter 1. Introduction 2

perform a task. An example of this principle is, in the case of learning to use a door

handle to open a door, one would want a robot to learn where forces should be applied

rather than the exact positioning of each finger, further bearing in mind that the robotic

hand may be configured differently to that of a human teacher.

This problem is more than one of function approximation, as ideally the agent

should learn a robust policy rather than merely imitating the behaviour of the expert.

To reproduce a given trajectory is a standard supervised learning task which would

equip a learning agent with an exact replica of the expert’s trajectory. Instead of this,

one would want a robot’s control policies to be able to handle a variety of contingencies

– some of which may not have been previously encountered. The robot could as a result

learn more from interactions with the expert, rather than merely copying the expert.

The skills learned by the robot could potentially be greatly diversified if it had a

method for composing skills from a set of elementary skills. In this way, a robot could

learn to perform simple tasks and then, once these have been mastered, use them to-

gether to form composite policies, or adapt them slightly for use in different tasks. This

would be a form of using hierarchical strategies as a result of synthesising elementary

strategies to ensure robustness in learning to accomplish certain behaviours. In this

way, the robot may become proficient in using the skills under variable, and possibly

adverse, conditions as well as changing environments. This idea of composing skills

is inspired by the concept of curriculum learning, which is discussed in Section 2.4.

This document describes a novel approach towards solving the behaviour acquisi-

tion problem in robots or other systems, by using an architecture composed of a system

for learning elementary skills from observing expert agents, and then another to syn-

thesise these skills to learn to perform efficiently at more complicated tasks. Chapter

2 presents an overview of related literature in the various fields which were drawn on

for this work. Chapter 3 describes the research aims and hypothesis, as well as pro-

viding the details of the algorithm that was developed and implemented. Finally, a set

of experiments that were run to establish the abilities and restrictions of this system

are described, and the results of the algorithm are presented and discussed in Chapter

4. An analysis of these results shows that the performance of the structured strategies

generated by the algorithm are superior to the performance of the elementary strategies

from which they are constructed.



Chapter 2

Background

2.1 Introduction

There have been many previous approaches to developing agents capable of learning

skills, and indeed learning these from an expert, or teacher. However, it is the belief of

the author that to date none have embraced a method capable of learning by acquiring

structured strategies to perform skills which are robust in that they can withstand a

diverse range of conditions and disturbances and still achieve the desired outcomes.

The crux of this research is to extend previous work into learning skills. At the core

is a system whereby new skills can be acquired by an agent from the observations of

another agent with expert knowledge of the problem at hand. However, this research

aims to build on this by incorporating a method for drawing on a combination of these

individual skills to enhance their applicability to new scenarios, and so structure this

skill acquisition process in a hierarchical fashion.

This chapter reviews previous related research. Section 2.2 discusses previous

work which addressed the core challenge of learning from an expert. One approach

which is often used in such work for the learning of a policy in goal-directed learning

is reinforcement learning. This is covered in more detail in Section 2.3. The idea of

using a hierarchical approach towards composing primitive strategies into more so-

phisticated ones is a form of curriculum learning, which is presented in Section 2.4. In

order to synthesise these elementary strategies which have been learned from an ex-

pert, this work draws on techniques from the field of game theory, the key components

of which are discussed in Section 2.5.

3
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2.2 Learning from an Expert

Learning from an expert is commonly referred to as learning by demonstration or imi-

tation learning, and has recently become a popular technique through which robots can

learn to perform a wide variety of tasks [Breazeal and Scassellati 2002]. A framework

for imitation learning could be described in three steps [Bakker and Kuniyoshi 1996]:

observe an action, represent the action and reproduce the action. The first of these is

generally classed as a machine vision problem, and answers the question of exactly

what it is that the learning agent is observing and imitating. This subproblem will be

considered outside the scope of this research, which instead focuses on reconstructing

the motions of a teacher in terms of the basis set of motions available to the student

agent.

Imitation learning has been considered through the use of numerous different tech-

niques. Demiris and Hayes [1996] provide early examples where a student robot would

follow a teacher around a maze, and so learn the task of maze traversal by formulat-

ing rules, with a second experiment on a separate robot platform in imitating the head

movements of a human demonstrator. The problem with these methods is that they

were generated in an ad hoc, problem specific manner, which is not easily generalis-

able.

Similar limitations are encountered in the work of Atkeson and Schaal [1997],

where a robot could learn how to swing up an inverted pendulum from demonstration,

by either learning the parameters of the model of the motion of the pendulum, or

learning that model itself. This provides a matching of a single action to that of a

demonstrator, but is unsuited to achieving complicated behaviours as it only learns to

replicate the model of the action from the demonstrator. Other work, such as that of

Billard et al. [2004] uses machine learning techniques such as hidden Markov Models

to learn actions, but these are again ad hoc and based on merely replicating the actions

of the demonstrator. Inamura et al. [2004] also use hidden Markov Models to learn

motions, but these are represented and recognised as different symbols.

The main problem with these kinds of machine learning based approaches to imita-

tion learning is that they are primarily concerned with mimicking exactly the trajecto-

ries of the teacher agent in some configuration space (the space describing all possible

positions that may be attained by an agent). An alternative problem encountered in

previous methods is that the focus is placed solely on specific local behaviours. These

are not global approaches as too much emphasis is placed on particular nuances of
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the actions of the teacher agent, leaving the student without a resilient control strategy

which would be robust to adversarial conditions and noise.

A further issue to note is the difference between passive learning from demonstra-

tion of the expert vs active interaction with the expert. Passive learning allows the

expert to be performing the skill as part of some larger routine, whilst active interac-

tion refers to the expert providing the learner with some sort of feedback to indicate

how well the learner is performing, and possibly make corrections where appropriate.

A different approach has been suggested by Abbeel and Ng [2004] under the name

of apprenticeship learning. This work suggests that the previous methods of imitating

trajectories would be insufficient for most real-world applications, owing to the fact

that they cannot accommodate for disturbance processes operating in the vicinity of

the learner robot. The algorithm presented in this paper poses a learning problem as

one of navigating through a sequence of environmental states by selecting the correct

actions. The optimal policy for choosing these actions would be learned through a

reinforcement learning process (see Section 2.3). Furthermore, the agent would be

presented with a set of reward features generated by the expert in solving the same

problem, and by use of reinforcement learning, the agent could minimise the difference

between the experts features and its own, resulting in behaviour similar to that of the

expert.

These results were extended by Syed and Schapire [2008] to adopt a game theoretic

approach to learning, whereby the agent is competing against disturbances generated

by nature (the environment). A survey of game theory is presented in Section 2.5.

The advantage of this alteration is that the performance of the agent is no longer the-

oretically bounded by that of the expert, and so it would be possible for the agent to

learn to outperform the expert. The algorithm presented in this paper is the Multiplica-

tive Weights Algorithm for Apprenticeship Learning (MWAL), and is used as a key

component in the research presented in this document. This algorithm is presented in

Section 3.3.

Modifications and variants to this algorithm were proposed by Syed et al. [2008].

These involved the adoption of linear programming as a solution technique for the opti-

misation problem under the name of the Linear Programming Apprenticeship Learning

algorithm (LPAL). The primary contribution of this work was an increase in conver-

gence speed, but the results were fairly consistent, although LPAL did perform poorly

under certain circumstances. It remains an alternative to be considered in future work.
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2.3 Reinforcement Learning

2.3.1 Defining the Problem

Reinforcement learning is an example of goal-directed learning, and involves the learn-

ing of a behaviour such that some reward function is maximised [Sutton and Barto

1998]. It deals with the interaction of an agent with an environment, such that the

agent can repeatedly choose and implement actions, based on the state of the environ-

ment. These actions map the system to new states, but not necessarily in a deterministic

manner. This accounts for disturbances in the environment. The results of these actions

affect the agent by means of a reward function, which serves as feedback to positively

reinforce some states and actions, and dissuade the system from using others [Harmon

and Harmon 1999]. These rewards can be immediate or delayed. A reinforcement

learning problem is often defined in this way over a Markov Decision Process (MDP).

Formally, an MDP is defined as a tuple M = (S ,A ,Θ,γ,D,R) where S and A are

the finite sets of states and actions respectively, Θ is the transition function such that

Θ(s,a,s′) = P(st+1 = s′|st = s,at = a) defines the state transition probabilities. The

fact that this transition depends only on the state st at time t, and not on any previous

states, is known as the Markov property. Let A(s) denote the set of actions available

from some state s. γ ∈ [0,1) is a discount factor, D is the initial state distribution

from which an initial state s0 is selected, and R : S 7→ℜ is the reward function which

indicates the desirability of each particular state. An example of an MDP is shown in

Figure 2.1.

The objective of a reinforcement learning problem is to learn an optimal policy

π∗ for traversing the states of an MDP in such a way that the received rewards are

maximised. This policy is of the form π : S ×A 7→ [0,1] subject to the constraint

that ∑ai∈A π(s j,ai) = 1,∀s j ∈ S . This implies that the policy provides a mapping from

state-action pairs to probabilities, or alternatively, that the policy suggests a probability

distribution for which actions should be selected in each state, in order to maximise the

total reward.

The total reward accumulated from an episode of T state transitions is called the

return. The return starting from a state st is calculated as

Rt =
T

∑
k=0

γ
krt+k+1 (2.1)

where rt is the reward received at time t [Sutton and Barto 1998]. The return is dis-

counted by the parameter γ to ensure that Rt does not grow without bounds as T → ∞.
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Figure 2.1: A sample Markov Decision Process. The green circles are the states

{s0,s1,s2} and the red circles are the actions which can be taken at each state {a0,a1}.
The outgoing labels at each action are the probabilities of that state transition given that

action. The blue arrows correspond to rewards.

The more immediate rewards are thus also weighted more heavily than future rewards.

The optimal policy is therefore required to choose a sequence of actions in order to

maximise this discounted reward.

2.3.2 Solving for a Policy

There are many approaches to solving a reinforcement learning problem. In order to

obtain a solution, two further definitions are required. The state-value function for a

policy π is defined as

V π(s) = Eπ{Rt |st = s} (2.2)

= Eπ

{ ∞

∑
k=0

γ
krt+k+1

∣∣∣st = s
}

(2.3)

which is the expected return received from starting in state s and following policy π

thereafter. Furthermore, the action-value function for a policy π is similarly defined as

Qπ(s,a) = Eπ{Rt |st = s,at = a} (2.4)

= Eπ

{ ∞

∑
k=0

γ
krt+k+1

∣∣∣st = s,at = a
}

(2.5)
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which is the expected return received by the agent from starting in state s where it

takes action a, and then proceeds to follow π [Sutton and Barto 1998]. These two

functions are used to determine the desirability of particular states and actions under a

given policy. An optimal policy π∗ is one which would have the highest (and therefore

optimal) value functions V ∗ and Q∗ over all states and actions, giving that a maximal

return can be received by following the optimal policy rather than any other policy.

This is formalised as V ∗(s) = maxπV π(s) and Q∗(s,a) = maxπ Qπ(s,a) for all s ∈
S ,a ∈ A(s).

Algorithm 1: The ε-soft on-policy Monte Carlo algorithm
Input: An MDP M

Output: A policy π(s,a)

begin
Q(s,a)←− arbitrary ∀s ∈ S ,a ∈ A(s)

Returns(s,a)←− empty list ∀s ∈ S ,a ∈ A(s)

π←− an arbitrary policy

for t = 1, . . . ,∞ do
Generate an episode using π

for each pair s,a appearing in the episode do
R←− return following first occurrence of s,a

Append R to Returns(s,a)

Q(s,a)←−average(Returns(s,a))
end
for each s in the episode do

a∗←− argmaxa Q(s,a)

for all a ∈ A(s) do

π(s,a)←−

{
1− ε+ ε/|A(s)| if a = a∗

ε/|A(s)| if a 6= a∗

end

end

end
return policy π

end

The ε-soft on-policy Monte Carlo algorithm [Sutton and Barto 1998] is presented

in Algorithm 1. The idea behind this algorithm is to ensure that the policy remains ex-

plorative, and continues to sample from actions which may be suboptimal in particular
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states. This is ensured as follows: the best action a∗ is greedily selected in a state s as

the one giving the highest action-value for that state, a∗ = argmaxa Qπ(s,a). However,

it is likely to be the case that not all actions have as yet been tried in that state. As a

result, the algorithm assigns a small probability ε to every other action in that state,

meaning the policy retains the ability to take an action a′ that may be better than the

currently assumed best, but has not yet been tried. So most of the time the current

estimate for the best action will be taken, but another action will be chosen at random

with probability ε.

By repeatedly generating new episodes, the algorithm is able to approximate the

expected action-value function under the current policy, E[Qπ(s,a)]. This is an exam-

ple of generalised policy iteration, and is Monte Carlo in the sense that it estimates

the value function through the repeated visiting of chains of states. It has been shown

[Sutton and Barto 1998] that as the number of visits to each state tend towards infinity,

the approximated value functions converge to their optimal counterparts.

There are more sophisticated Monte Carlo policy iteration algorithms which move

the probabilities of selecting the optimal action gradually, rather than immediately

choosing greedily, but the asymptotic convergence of Algorithm 1 was deemed suffi-

cient for the purposes of this research.

2.4 Curriculum Learning

It is a widely acknowledged fact that most humans learn better by means of a cur-

riculum [Elman 1993]. Throughout the schooling of a person, that person is gradually

introduced to increasingly complicated concepts. It has been hypothesised that a ma-

chine learning algorithm could greatly benefit from a similar approach, in terms of both

speed of convergence and quality of the optimum [Bengio et al. 2009]. The idea is that

the iterated increase in difficulty of a task would guide the learning agent towards con-

vergence. Bengio et al. [2009] successfully use this curriculum learning approach to

train neural networks in a variety of examples, such as gradually introducing noise to

data, and shape recognition.

Shaping also refers to a learning task which becomes increasingly more compli-

cated with each instance. Erez and Smart [2008] suggest that this could be success-

fully implemented in reinforcement learning problems in several ways. The difficulty

of the problem could be altered by modifying the reward function, the dynamics of the

problem, the internal parameters, the initial state, action space or extending the time
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horizon.

An extension of this for learning a control policy would be through the use of mo-

tion primitives. Motion primitives represent an alternative view to learning complete

actions, and are an extension of the approach of representing different types of motions

as symbols. An agent’s motion primitives are the simple actions which it can easily

perform. These can be used in conjunction as building-blocks to form more compli-

cated behaviours, rather than the agent learning an entire motion sequence from scratch

[Choset et al. 2005]. This method is used by Nakanishi et al. [2004] for the simulation

of biped locomotion where the primitives are based on different phase oscillators and

the parameters are learned using weighted regression. Schaal et al. [2004] establishes

the concept of dynamic motion primitives, which are point attractors with nonlinear

dynamics. These can be combined to describe complicated motions, the parameters of

which can be learned through either supervised or reinforcement learning techniques.

This is a different problem to that solved by hierarchical reinforcement learning

[Singh 1992]. Hierarchical RL consists of learning a task at various levels of abstrac-

tion, such that more environmental details are included at each subsequent level. In this

way a task can be broken down into subtasks which are easier to solve. This is different

to the approach considered here which involves composing a hierarchy of known poli-

cies into a new policy which can achieve some desired performance in certain unknown

conditions.

The representation of actions in terms of a basis of elementary motions still requires

a mechanism for learning how to compose these primitives. A solution method for

combining a sequence of moves into a viable and robust global strategy in a closed-

loop form, which is as yet unexplored, may be taken from game theory. An overview

of game theory is presented in Section 2.5. The idea of composition is thus not a new

one, however using it within such a learning framework to synthesise robust strategies

as presented in this document is, to the knowledge of the author, novel.

2.5 Game Theory

2.5.1 Preliminaries

Game theory is a field which has seen much development in recent years from a variety

of different disciplines, such as economics. It is a topic which is based around the

idea of multi-agent decision making, and the interactions between these agents as they
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attempt to achieve certain goals, which may be cooperative or adversarial [Basar and

Olsder 1999]. Although in theory any number of interacting agents may be modeled,

for the purposes of this dissertation it is sufficient to deal with only two agents.

Consider such a game of two agents or players, creatively named Player 1 (P1) and

Player 2 (P2). The game consists of P1 choosing one of N actions, and P2 simultane-

ously choosing one of M actions. The normal form of a game between these players, is

represented as an (N×M) matrix A, where each element of the matrix corresponds to

an outcome of the game, being the reward, or payoff, received by the agents for play-

ing particular actions. Furthermore, consider that the game is zero-sum, meaning that

any loss incurred by one player corresponds to the exact gain by the other. The actions

available to P1 are the rows of the matrix, and hence P1 is the row player. Similarly,

P2 is referred to as the column player. This situation is shown in the matrix below.

Player 2

Action 1 · · · Action j · · · Action M

Action 1
...

Player 1 Action i ai j
...

Action N

In this case ai j is the payoff received by P1, when P1 plays action i and P2 plays action

j. Owing to the fact that this is a zero-sum game, the payoff to P2 would be −ai j. In

this set up, P1 wishes to receive as much payoff as possible, and is hence also known

as the maximising player. By also attempting to maximise personal gain, P2 must

decrease the gains of P1 and is thus the minimising player.

One common description of a solution to such a game is a Nash equilibrium so-

lution. This is an action pair for the two players (i∗, j∗) with i∗ ∈ [1, . . . ,N] and

j∗ ∈ [1, . . . ,M] such that neither player can gain in reward by unilateral deviation from

this strategy [Basar and Olsder 1999]. If the game is played repeatedly and the equi-

librium is obtained by P1 continually selecting a particular row i∗ while P2 selects the

j∗th column then i∗ and j∗ are known as pure strategies. An alternative type of solution

is a mixed strategy. This means that there is no single action which guarantees an equi-

librium. Instead, the player should choose between a subset of its actions with some

probability distribution. Thus the players could be said to be playing an equilibrium

solution if they are selecting actions according to this optimal probability distribution.
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Let p∗ and q∗ be the probability distributions over the actions available to P1 and

P2 respectively which give a Nash equilibrium. Then the optimal payoff given from

P2 to P1, otherwise known as the value of the game, is defined as v∗ = p∗Aq∗ [Nisan

et al. 2007].

2.5.2 Learning in Games

Much research has been conducted into games played by two players in an attempt to

reach equilibrium, because finding a Nash equilibrium is a non-trivial task. There are

several different methods for achieving this in a repeated game. Fictitious play is a

simple learning rule which involves an agent choosing a best response to its opponent

based on the empirical frequencies of the actions taken by that opponent. Extensions

to this involve using additional information such as approximations of the gradients of

action frequencies [Shamma and Arslan 2005].

Another related approach involves identifying and matching patterns in the most

recent moves made by the other player [Lambson and Probst 2004]. A best response

strategy can be played using the history of the other player in this way. Young [2009]

presents a different approach for when the payoffs are not all known, in the form of

interactive trial and error learning to determine effective long-term strategies. This

works by the agent selecting actions in an explorative manner to determine a best

strategy, but is also sensitive to a strategy no longer being the best one if the behaviour

of another player changes. Other approaches include generating and testing hypotheses

to describe the behaviour of the opponent [Foster and Young 2006].

Regret minimisation [Nisan et al. 2007] is another computational technique for

finding a mixed equilibrium solution. For each time the game is played, the payoff for

the current approximation of the optimal mixed solution is compared to the payoffs

which would have been obtained by playing any of the available actions. These are

known as regrets. The approximate solution is then updated in some way to draw more

heavily on the actions with higher regrets.

The multiplicative weights algorithm [Freund and Schapire 1999] is one such algo-

rithm. The learning player starts with an arbitrary initial strategy p1. At each round of

play t, the learning player updates its mixed strategy with the following computation

pt+1(i) = pt(i)
βM(i,qt)

Zt
(2.6)

where pt(i) is the weight of the ith pure strategy of the learning player in its approxima-

tion of the optimal solution at time t, β∈ [0,1) is a parameter of the algorithm, M(i,qt)
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is the regret from not having played the ith pure strategy against the strategy qt which

was used by the opponent at time t, and Zt is a normalisation factor. This algorithm has

been shown to be optimal under the correct conditions [Freund and Schapire 1999].

2.6 Conclusion

This chapter examined a number of techniques that could be used in the process of

learning control policies. Learning from demonstration remains the one key focus of

this work. It has been addressed from several different angles, and has achieved much

success in that the trajectories of an expert can be learned by the apprentice. However,

a common limitation of these methods is that the learned strategies are not robust in

the face of unknown conditions and adversaries. This challenge would be overcome

with the incorporation of curriculum learning. By assembling a basis of simpler tasks,

it is hoped that the agent could utilise and combine these in some way so as to increase

the sophistication of the learned skills.

Two valuable techniques used in this work are reinforcement learning and game

theory. Reinforcement learning provides a technique whereby optimal policies can be

learned for specific situations, using feedback in the form of reward functions. Game

theory then offers approaches towards the mixing of different strategies which may

perform better of worse against different adversarial behaviours.

The following chapter draws on the concepts and principles outlined in this lit-

erature review in the construction of a hypothesis and algorithm for the learning of

structured control policies from demonstration.



Chapter 3

Hypothesis and Architecture

3.1 Introduction

Although learning proficiency at an arbitrary skill, from initially having no knowl-

edge about that skill, is not a trivial task, it is important that robots or other agents be

equipped with some mechanism for broadening their range of skills. As illustrated in

Section 2, learning a skill by watching or interacting with an expert has been shown to

result in the successful transference of skills from teacher to student.

The problem is that traditionally this teaching process has not been structured, and

the apprentice does not synthesise the acquired knowledge to result in skill sets which

are robust in the presence of arbitrary disturbances, and successful in a range of unpre-

dictable circumstances. An approach to overcome this drawback in learning method-

ologies is presented here, in the form of a hierarchical learning system, where a skill is

taught to the agent in various elementary scenarios, and these skills are subsequently

combined to extend the domain of applicability of the learned skill to unknown and

more sophisticated environments.

This chapter presents the methodology of the research. Section 3.2 formalises the

hypothesis addressed by this research, and links that with an overview of the hierar-

chical approach taken. The details of the method for learning a task in the base cases

from interaction with an expert is discussed in Section 3.3, and the method used for

the composition of these skills to manage more complicated scenarios through the use

of game theoretic techniques, is detailed in Section 3.4. The details of the integration

of the complete system comprising these two stages are presented in Section 3.5.

Chapter 4 then proceeds to present a sample domain of navigating a car through

traffic on a multi-lane road, and illustrates the performance of the algorithm in this

14
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setting. These results draw attention to particular findings such as the ability for the

algorithm to draw primarily on a particular base scenario when that is presented as an

‘unseen’ case, as well as other intuitive mixing of strategies.

3.2 Hypothesis

The general problem addressed in this dissertation is one of apprenticeship learning

[Abbeel and Ng 2004], otherwise known as learning from demonstration, or imitation

learning. The goal of apprenticeship learning is for an apprentice, or student agent, to

learn a skill in order to complete a specific task from the observation of an expert agent,

or teacher. In this context, an expert is considered to be some agent with a sophisticated

control policy for performing the task at hand. The apprentice agent is equipped with a

set of basis actions which it knows how to perform, and is required to synthesize these

into a composite policy, based on the behaviour of the expert in the problem domain.

Often, in imitation learning, it is assumed that the apprentice and expert have the same

considerations, but in general this may not be true at all. For instance, the expert may

be trying to minimise solution time, but this may be of no concern to the apprentice.

Furthermore, even the action set available to each agent may be different.

An important component of such a learning system would be a mechanism for ob-

serving the expert, and translating its behaviours into movement through a state space.

This ‘vision’ task is problem-specific and would depend on the type of robot and the

sensors available to it. This project aims at the development of a general algorithm

for learning control policies, and thus assumes sensory input has been preprocessed to

allow the algorithm to operate exclusively in the domain of trajectories through state

space. This state space could be considered to be a configuration space enumerating

all the possible physical configurations of the agent, and is interpretable as a mani-

fold, or high dimensional surface that locally (and not necessarily globally) resembles

Euclidean space. Trajectories in this space therefore describe the motion of the agent

through a sequence of poses [Choset et al. 2005], and so learning a control policy at

this level of abstraction corresponds to the acquisition of a skill by the agent.

The algorithm constructed to address this learning problem consists of two stages.

The first involves the generation of policies for performing some task in a set of base

cases. The method whereby this is done draws on reinforcement learning as well as

regret minimisation in game theory to imitate the expert agent. The second stage is con-

cerned with presenting the agent with an unseen scenario, and the agent is expected to
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synthesise policies learned in the first stage to successfully perform the task in the new

setting. This stage again utilises game theory, with regret minimisation used to find a

Nash Equilibrium between the policies used by the agent, and adversarial conditions

presented by the environment.

The key reason for invoking a game theoretic approach lies in the fact that the con-

ditions faced by the learning agent in some environment are likely to be adversarial.

For a learning approach to deal with such a wide range of environmental effects as

may be encountered by the agent would typically require a large amount of knowl-

edge about the ‘world’ encountered by the agent, and the dynamics thereof. However,

the game theoretic approach allows for the use of procedures which could form ap-

proximations to a Nash equilibrium with very little information about the processes

in this environment. It is thus an approach which alleviates some drawbacks in deal-

ing with uncertainty using other modeling paradigms, as the ultimate goal of this line

of research would be to have an algorithm which could learn from and respond to a

potentially infinite and constantly changing environment.

This approach is thus summed up as:

1. Given a task to be learned, a set of problem domains {B1,B2, . . . ,BN} on which

that task can be performed, and an expert with a policy corresponding to each

domain {πEi}(i = 1 . . .N): the agent learns a policy {ψi}(i = 1 . . .N) from the

expert for each domain.

2. Given a new problem domain B̃ for the same task, synthesise a policy for this

domain as a function of the previous policies ψ̃ = f (ψi).

The proposed framework for this architecture is illustrated in Figure 3.1. This

indicates that observing and learning from an expert would allow the agent to acquire

a primitive skill. Once a library of these primitive skills has been assembled, they can

be synthesised using a different mechanism to generate new variants of the skill which

are suitable for different conditions to those initially demonstrated by the expert.

The hypothesis of this research concerns the viability of using such an approach to

robustly learning a skill, and can be formalised as

• Using a synthesised, hierarchical approach to apprenticeship learning, using in-

teractions with an expert to learn a basic set of strategies and drawing on game

theoretic techniques for composing these to obtain an equilibrium, an agent can

successfully learn a complex strategy for performing some task under an arbi-

trary set of conditions and natural disturbances.
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Figure 3.1: The proposed framework

This hypothesis should now be formally considered and clarified. The task to be

completed should be arbitrary, that is, the learning algorithm should make no assump-

tions about the nature of the task, other than that the expert from which the agent learns

would have some (not necessarily optimal) strategy for performing that task. Strategies

should be demonstrated and learned in simple cases, but then the agent should combine

these elementary strategies to be able to handle more sophisticated tasks. Robustness is

ensured using a game theoretic approach, as this allows the agent to synthesise strate-

gies in order to respond to worst case adversarial conditions.

The success of such a method seems difficult to determine, as proficiency at a task

is difficult to rank. However, if the agent is able to improve performance over any

of the base strategies with a combined one on an unseen case of the problem, and

yield results similar to those obtained by an expert agent, then the algorithm could be

deemed successful.

The two stages of the algorithm, the acquisition of elementary skills and the syn-

thesising of these skills on different instances of a problem task, are discussed at length

in Section 3.3 and Section 3.4 respectively.
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3.3 Primitive Skill Acquisition

A task to be learned by the agent is posed as a Markov Decision Process (MDP) con-

sisting of multiple states, and actions to transition between them. Actions are chosen

and implemented by the agent (as primitive actions available to the agent). Addition-

ally, the transitions between states are also subject to environmental events, where the

environment is considered to be everything external to the agent. These disturbances

are manifested by the fact that state transitions are probabilistic, ie. selecting a par-

ticular action in a particular state could result in one of several possible outcomes.

The domain of the problem can be changed by varying the rewards on the transitions,

making some routes more favourable than others.

The objective of the agent is to learn a policy π : S ×A 7→ [0,1] which maps states

to a probability distribution over the actions that may be considered in each state. The

problem of learning such a policy as it is posed here is a problem from the field of

reinforcement learning, and could be solved using a number of techniques such as

policy iteration or value iteration. However, consider now that the true reward function

R∗(s) is unknown. Instead, assume that the learning agent has available a vector of

features φ : S 7→ [−1,1]k which describes the desirability of particular features of a

state. Generally, if the MDP represents the position of the agent on a manifold in

some configuration space, the features represent properties of the manifold at different

locations. Now let the true reward function be a linear combination of these features

such that R∗(s) = w∗ ·φ(s) where w∗ ∈ℜk is an unknown weight vector. The apprentice

is required to learn this weighting from observations of the expert.

This weight vector can be learned together with the policy by the Multiplicative

Weights for Apprenticeship Learning (MWAL) algorithm [Syed and Schapire 2008].

This approach defines a feature expectations vector as the expected, cumulative, dis-

counted feature values of a policy π as

µ(π) = E
[ ∞

∑
t=0

γ
t
φ(st)|π,Θ,D

]
(3.1)

Given an expert’s policy πE , the goal is to find a policy π for that agent, such that

V (π)≥V (πE)− ε, where V (π) is the value of a policy π on the MDP M,

V (π) = E
[ ∞

∑
t=0

γ
tR∗(st)|π,Θ,D

]
(3.2)

and therefore V (π) = w∗ ·µ(π).
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The goal policy may be either a stationary policy π or a mixed policy ψ, being a

distribution over the set of all stationary policies. The approach taken by the MWAL

algorithm views the decision making process as a two player zero-sum game, where

the maximising player is the learning agent selecting a distribution over the policies,

and the minimising player is the environment which selects the reward function by

changing the values of w. The maximising player wishes to find a mixed policy ψ to

maximise V (ψ)−V (πE) with unknown and potentially worst-case choice of w. The

fact that the weights of the constituent elements of the reward function are unknown

and this reward function could therefore be selected in an adversarial manner by the

environment, suggests that this problem be posed as a game. This game can then be

represented as

v∗ = max
ψ∈Ψ

min
w

[w ·µ(ψ)−w ·µ(πE)] (3.3)

= max
ψ∈Ψ

min
w

wT Gψ (3.4)

with

G(i, j) = µ j(i)−µE(i) (3.5)

where µE = µ(πE), µ j = µ(π j) for π j the jth stationary policy, and µ(i) is the ith com-

ponent of µ.

The algorithm solves this game using the regret minimisation procedure of iter-

atively adjusting the weights w, using a multiplicative weights algorithm for solving

large games [Freund and Schapire 1999] and then finding an optimal policy ψ for the

current weights [Sutton and Barto 1998]. This approach has been shown to result in

successfully acquired skills. Furthermore, because the apprentice learns exclusively

from the feature expectations of the expert µE , the skill acquisition of the apprentice

is independent of not only the control policy used by the expert, but also its state and

action space. The apprentice may therefore be equipped with only a crude approxima-

tion of the actions available to the expert, yet still be able to learn the demonstrated

skill.

Algorithm 2 presents the pseudocode for this process of learning base policies,

reproduced from Syed and Schapire [2008]. The algorithm iteratively computes the

optimal policy for the current reward function R(s) = w(t) ·φ(s) using a method such

as an on-policy Monte Carlo control algorithm (see Algorithm 1), and then adjusts

the reward function, by changing the weights w to minimise the regret incurred from

sub-optimal playing of this game.
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Algorithm 2: The MWAL Algorithm
Input: An MDP M, and an estimate of the feature expectations of the expert, µ̂E

Output: A mixed policy ψ̄ = {π̂(t)} for all t ∈ {1, . . . ,T}
begin

β←−
(

1+
√

2lnk
T

)−1

W(1)(i)←− 1 for all i = 1, . . . ,k

G(i,µ)←− ((1− γ)(µ(i)− µ̂E(i))+2)/4

for t = 1, . . . ,T do

w(t)(i)←− W(t)(i)

∑ j W(t)( j)
for all i = 1, . . . ,k

Compute optimal policy π̂(t) w.r.t. R(s) = w(t) ·φ(s)

Compute an estimate µ̂(t) ≈ µ(π̂(t))

W(t+1)(i)←−W(t)(i)βG(i,µ̂(t)) for all i = 1, . . . ,k
end
ψ̄←− {π̂(t)} for all t ∈ {1, . . . ,T} with probability 1

T for each

return mixed policy ψ̄

end

The output of this algorithm is a mixed policy, with the use of which the agent can

perform almost as well as, if not better than, the expert on the given task and domain,

in terms of the reward function composed of the feature vectors.

3.4 Composite Skill Acquisition

Valuable questions to ask at this point would be the following: assuming an agent had

acquired the ability to perform some skill in various instances, what would happen if

a new, previously unseen scenario was encountered and the agent could not rely on an

expert for a demonstration in this setting? Is there a way in which the agent could draw

on the previously learned cases to synthesise a control policy for dealing with this new

scenario?

These questions are equivalent to considering the incorporation of a curriculum into

the learning schedule of the apprentice. This addition involves an expert demonstrating

the use of a skill in a limited setting as before, and once the apprentice had mastered

that skill, the expert would advance to a more challenging setting. In this way, the

apprentice would be learning strategies under varying conditions. The result would be

the acquisition of a complicated skill – one which the apprentice may not have been
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able to learn from a single training case, but which could be applied in a new scenario.

This section presents this extension to the aforementioned algorithm through the

use of such a curriculum. In this way, elementary strategies learned from observation

of the expert must be composed to form composite strategies for different cases of the

problem. The policies learned in the first phase are used as the input to the next stage

of the learning task, where the apprentice combines them in order to learn a slightly

different variant of the skill. A difficulty to consider at this point is that both the state

space and the action space is likely to be different from one scenario to the next. The

assumption is made that these are however kept constant across all instances of the

learning problem, but the relaxation of this assumption could be the subject of future

work.

The method whereby this is accomplished is to pose the problem as a game. This

is an intuitive approach, as the agent wishes to synthesise the learned policies so as

to maximise the reward gained from the MDP of the new task instance in the face of

nature (the environment) which is acting as an adversary. As the behaviour of the en-

vironment is unknown, it makes sense to optimise against the worst-case scenario. An

appropriate language for such adversarial optimisation can be found in game theory.

Consider that in the first stage of the algorithm (Algorithm 2), the agent was pre-

sented with a set of problem instances {B1,B2, . . . ,BN} in which the agent learned

policies {ψ1,ψ2, . . . ,ψN} from the expert for each instance. The agent is now pre-

sented with a new instance B̃ for the same task, and is required to learn a new policy

ψ̃ = f (ψ1,ψ2, . . . ,ψN) to successfully complete this task.

Now consider a two-player repeated matrix game G defined as follows: the agent is

the row player which hopes to maximise its reward in using its skill on B̃ in the presence

of the column player – nature. The actions which may be played by the agent are the

set of N primitive policies Ψ = {ψ1,ψ2, . . . ,ψN}, and the M actions which may be

played by nature to present adversarial conditions are denoted Q = {Q1,Q2, . . . ,QM}.
The value of the game matrix for using the policies (ψi,Q j) is G(i, j) and is a function

of B̃. The solution to this game would be to find a Nash equilibrium (ψ∗,Q∗) such that

unilateral deviation from this policy can not result in a better outcome.

The method used to find this mixed equilibrium is a regret minimisation technique,

and is in fact based on the MWAL algorithm (Algorithm 2) of Syed and Schapire

[2008] as well as the multiplicative weights algorithm of Freund and Schapire [1999].

The Strategy Composition Algorithm is shown in Algorithm 3. E[R(P,Q)] is the ex-

pected reward of playing policy P on the MDP B̃ in the presence of nature’s adversarial
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Algorithm 3: The Strategy Composition Algorithm
Input: An MDP B̃, and a set of primitive strategies Ψ = {ψ1,ψ2, . . . ,ψN}
Output: A mixed policy ψ̃ = w ·Ψ
begin

β←−
(

1+
√

2lnN
T

)−1

w(1)(i)←− 1
N for all i = 1, . . . ,N

for t = 1, . . . ,T do
ψ̃ = w(t) ·Ψ
G(Ψ, ψ̃,Q)←− ((E[R(ψ̃,Q)]−E[R(Ψ,Q)])+1)/2

W(i)←− w(t)(i)βG(ψi,ψ̃,Q) for all i = 1, . . . ,N

w(t+1)(i)←− W(i)
∑ j W( j)

for all i = 1, . . . ,N

end
return mixed policy ψ̃ = w(T+1) ·Ψ

end

policy Q.

The algorithm starts with a mixed policy consisting of a uniform distribution over

the primitive policies, and relies on an iterative procedure to update this distribution

by multiplicatively allocating more weight to the policies which perform better on B̃.

The output is a mixed policy consisting of a distribution of the primitive policy set Φ

giving an equilibrium strategy for B̃.

This composed strategy ψ̃ is a linear combination of the policies in Ψ. Assume

strategy ψi selects an action a j in state sk with probability pi
k j. Then, given a final

mixed strategy weighting w(T+1) = {w1,w2, . . . ,wN} with ∑i wi = 1, then policy ψ̃

would choose action a j in state sk with probability p̃k j = ∑i wi pi
k j. The weights are

biased towards the policies that achieve a higher expected reward on B̃.

Using regret minimisation, Algorithm 3 thus learns to rely more heavily on the

strategies which generate higher rewards on this unseen MDP.

It is important to note that this is not simply a case of state estimation, and applying

the appropriate policy. The agent does not have knowledge of the conditions (rewards)

of this unseen MDP and so cannot directly apply a policy. An alternative approach

would be to employ a form of vision and identification system to recognise the MDP

and choose the best policy. However, the premise of this work is that there are too many

possible conditions to anticipate each scenario and thus this game-theoretic approach

is used to synthesise the best policies.
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3.5 Complete Learning System

The full system is composed of the two algorithms detailed in Sections 3.3 and 3.4

respectively. Repeated learning of a skill in different scenarios with Algorithm 2 would

establish a basis of strategies. A combination can be learned from these to give a

control policy for performing that skill in a new setting, with arbitrary disturbance

processes. Consequently, the output from the MWAL Algorithm is used as input to the

Strategy Composition Algorithm.

Figure 3.2: Policy composition example. Here four basic actions (a) are used to create

five elementary policies (ψ), which in turn are synthesised into three composite policies

(ω).

The same set of basis strategies could be used to learn synthesised strategies for

many different scenarios. An example of the complete learning process is illustrated in

Figure 3.2. The actions of the MDP (denoted a) are composed into primitive strategies,

denoted in the image as φ. This is the extent of previous work such as that of Syed and

Schapire [2008], and represents supervised learning guided by the expert. These prim-

itive strategies are in turn synthesised to form policies for more complicated scenarios,

as shown in the image by the ellipses labeled ω. This is an unsupervised learning task.

It can thus be seen that this solution technique is hierarchical in nature, and consists

of two different forms of learning task. The result is a rich set of synthesised policies,

which are more complicated than would have been possible to learn from the expert
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generating basis strategies alone.

The two phases of this combined algorithm provide a mechanism whereby the

learning agent could be guided through the acquisition of a basic set of skills by a

teaching agent, and then extrapolate these skills to more sophisticated settings with an

unknown adversarial environment.

As an extension to this, one could envision additional steps in the hierarchical

process, whereby not only are these synthesised strategies further composed to handle

even more elaborate scenarios, but this strategy composition process could also be

guided by an expert, as was the case for the MWAL Algorithm. This remains the topic

of future research.

3.6 Conclusion

The ability to learn different behaviours and skills is important for robots to play a

useful role in society as it suggests adaptability and versatility. One intuitive method

for accomplishing this is through the use of learning by demonstration. As a result of

this, a robot should be able to acquire new abilities by watching an expert. Ignoring

the vision problem of mapping agent configurations to states, the problem becomes

one of learning optimal trajectories on the surface of a manifold which represents the

configuration space of the agent. Learning a policy in this setting is equivalent to

formulating a probabilistic mapping from states to actions on an MDP.

By drawing on the prior knowledge of an expert, and observing the expert utilising

a skill, a learning agent is able to acquire proficiency in that particular skill for a given

set of conditions. Repeating this process in a variety of different conditions provides

the agent with the set of skills. Using these as a basis, and playing a repeated game

of strategy selection against nature, the agent can synthesise these skills and deduce a

mixed strategy which would to enable it to respond to novel scenarios.

The algorithm presented in this chapter is composed of two phases. The first learns

a policy from an expert on an MDP, and the second combines these policies to add

robustness and the ability to generate different variants of the skill. The following

chapter discusses the implementation and experiments that were conducted using this

algorithm, and presents the results which were produced. These results are used to

determine the extent to which this system could be considered successful.



Chapter 4

Results and Discussion

4.1 Introduction

Chapter 3 outlined the creation of an algorithm which was based on the principles of

learning from an expert, reinforcement learning, game theory and curriculum learning,

all of which are discussed in Chapter 2.

The algorithm uses a multiplicative weights process and guidance from the ex-

pert to learn both the reward function for a particular skill and an optimal policy for

maximising the rewards. This is repeated for each training scenario presented to the

apprentice agent in order to create a basis of learned skills in different settings. The

second phase of the algorithm is then concerned with using this basis of strategies

to synthesise new strategies for unseen scenarios. This is again implemented with a

multiplicative weights regret minimisation approach, in order to determine an optimal

contribution of each strategy in the basis, to the new strategy.

Implementation of these two phases of the algorithm was done in MATLAB, and

the code for each section can be found in Appendix A and B respectively.

This chapter describes and presents the experiments and corresponding results

which are used to demonstrate the algorithm in practice. Section 4.2 outlines the de-

tails of the experiments and domain used to test the algorithm. Section 4.3 provides

details of the results of the first phase of the algorithm, which deals with the learning of

basis policies from an expert. The second phase, that is the synthesis of new strategies

in unseen environments, is demonstrated in Section 4.4 together with the results and

discussion of this policy synthesis. Finally, an analysis of the overall performance of

the algorithm is presented in Section 4.5.

25
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4.2 Sample Learning Experiment

4.2.1 Problem Formulation

In order to test the algorithm empirically, a test problem was established. Inspired by

the examples used by Abbeel and Ng [2004], Syed and Schapire [2008] and Syed et al.

[2008] the skill to be learned was one of navigating through traffic. The agent consists

of a single car on a multi-lane one-way road. Assume all traffic is moving at a fixed

speed, and the agent travels faster than the rest of the traffic. The net effect is that all

the other cars on the road are moving towards the agent. The other cars do not exhibit

any complicated behaviour such as changing lanes themselves. The goal of the agent

is to learn to navigate on such a road while minimising collisions with other vehicles.

This situation is demonstrated in Figure 4.1.

Figure 4.1: An illustration of the car navigation problem

As an extension to the example cited in the aforementioned three papers, consider

that the navigability of the road may change at different points. For simplicity, two

approximations are made. The first is that the road is discretised by car length. The

result is that a stretch of the road can be viewed as a two-dimensional grid, where the

length is the number of car lengths, and the width is the number of lanes. The second

approximation is that the road is considered to be either paved or not at each point,

with a high and low reward for using such a portion of the road respectively. This

could be easily generalised so the road could have intermediate levels of navigability.

As an example consider Figure 4.1 where there are seven lanes, but the entirety of the

outer two lanes are unpaved (and so one would rather have the agent using these only

if it cannot be avoided).

There are two different sources of randomness encountered by the agent in this

setting. The first is the layout of the terrain over which the agent drives. This is

a parameter of the problem, and corresponds to different conditions under which the
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agent must learn to drive. The second is other cars on the road. These act as adversarial

disturbances to the learner, and are generated by nature by means of some unknown

process. The agent must therefore learn to drive optimally on a given terrain in the face

of adversarial traffic conditions, where optimally refers to its attempts to maximise

time spent on the paved sections of the road.

An important consideration is the extent to which this environment is observable.

Consider that the agent learns a skill on a predefined stretch of road. The conditions

of the surface are learned from experience and through observation of the expert. The

rewards associated with different parts of the road do therefore not contribute towards

the state space of the agent. If each section of road had a navigability reward r ∈ [−1,1]

then the resulting state space would be unwieldy in size.

Now consider the other cars on the road. The avoidance actions taken by the agent

are dependent only on the cars in some nearby horizon. For example, if a collision with

a car ci is imminent, it is irrelevant to the agent whether or not there is a column of

cars behind ci. For that reason, only the distance to the closest car in each lane need be

recorded. This has some correspondence to an actual driving scenario where distances

to obscured vehicles would be inaccurate at best.

Furthermore, the state of the agent obviously includes its position on the road, in

order for it to judge relative positions to other vehicles and receive the appropriate road

navigability signals.

The complete state space of the agent for this example is then defined as

S = agent position× car positions

and the action space for the agent is

A = {move le f t,no move,move right}.

The policy to be learned by the agent is then π : S ×A → [0,1] which gives the proba-

bility of each action being chosen in each state.

The next aspect to be defined are the features which describe the performance of

an agent, be it the learner or the expert. The important considerations in this problem

are the lanes used, as well as the collisions. For this reason, there is one feature for

each lane, and one for a collision. Use of a paved section of road yields a reward of

0.5, whilst an unpaved section has a payoff of −1. Similarly a collision contributes a

payoff of −1 and all non-collisions 0.5.

This example domain, while tangible and easily visualised, is a sample of the kind

of domain that would be encountered in a robotics example. Instead of the road, one
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could imagine a multi-dimensional manifold representing a configuration space of a

robot. The regions of paved or unpaved road could be interpreted as dynamics, con-

ditions and constraints on the surface. Finally, the other cars represent adversarial

disturbances which may be encountered by the robot and perhaps are not foreseen or

predictable. In this way, learning to drive on this multi-lane road would be equivalent

to learning any other skill on an arbitrary manifold for a robot.

4.2.2 Establishing a Basis

The learning agent must be presented with a full basis of different scenarios on which

to learn behaviour from the expert, in order to be able to synthesise them to form new

strategies for unseen terrains. The basis was selected by the author as a set of intuitive

road shapes, but this is by no means meant to be a ‘best’ basis or cover all eventualities.

In fact, the converse should be true. By using an incomplete basis, the agent should

still be able to synthesise some mixed strategy which would perform better in an unseen

situation than any of the pure strategies. It is unrealistic to expect that a complete and

comprehensive basis for all complex scenarios that could be encountered in a skill

would be enumerated, hence the need for this learning mechanism.

Figure 4.2: The set of basis roads used in the experiments. The dark areas depict

unfavourable ‘unpaved’ regions, and the light areas show the ‘paved’ regions providing

higher reward.
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For these experiments, a basis of roads sized 5×5 were selected. That means that

each road in the basis consisted of five lanes, with each lane being represented by five

car lengths.

The set of basis roads is shown in Figure 4.2. As can be seen, this includes roads

of different widths, different offsets, a split road and two diagonal roads. Each element

of the basis which is not symmetric about the central lane has its symmetric equiv-

alent included in the basis as well. Let these basis roads be denoted R1 through R8

respectively.

4.3 Primitive Skill Acquisition Results

The first stage of the algorithm involves learning optimal strategies for performing a

skill in a known environment. This skill is learned from the observation of the perfor-

mance of an expert agent in that setting.

For the experiments presented in this section, the sample roads were all sized 5×5,

as mentioned in the previous section. The size of these environments is small, and

was restricted by the time available for computations. Although the performance of

the algorithm should ideally be examined in a larger setting, the results obtained are

sufficient to demonstrate the success of the algorithm, as well as draw attention to

several aspects of its performance.

The roads used for training in the basis are shown in Figure 4.2. These were chosen

not specifically to form a complete basis, but in a more ad hoc manner to allow for

different properties, such as varying directions of lanes and road widths. This is used

to demonstrate that it is not necessary to have a perfectly crafted basis in order for a

learning agent to devise a method for navigating a new terrain. For each iteration of

each experiment, the starting location for the agent was drawn uniformly from the 5

lanes.

The reason that the number of collisions made by the apprentice is not completely

reduced to zero is because the Monte Carlo policy iteration uses soft policies. That

means that a small chance of choosing an alternate policy over the currently determined

best one remains. This could be easily altered if a collision was considered worse than

leaving the road for the agent. However, as it stands, both these actions are considered

equally bad as far as the agent is concerned.
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4.3.1 Learning a Basis

This section describes the results from having learned policies for each of the eight

component roads of the basis. In each case, the algorithm was run for 100 iterations.

For each iteration of every experiment, both agents were started at a position along

the top of the road, selected uniformly from all five lanes. The following images each

consist of three sub-images. The first of these, figure (a), depicts the road on which

the apprentice is being trained. Light areas correspond to paved areas in the road, and

dark areas are unpaved. Figure (b) then shows the six features for that policy (µ(π))

where the first five attributes correspond to the usage of each lane, and the sixth is a

lack of collisions. All are weighted by the appropriate rewards from the terrain. These

are the features used to train the apprentice, and correspond to the total quantity of

reward received by the agent for each attribute (spending time in that lane or avoiding

collisions). Finally figure (c) shows the lane use statistics and collisions of the final

trained policy when being executed for 100 iterations on that road. Note the difference

that in (b), the sixth attribute refers to the rewards obtained from a lack of collisions,

whereas the sixth attribute in (c) is a count of the collisions themselves. In both figures

(b) and (c) the red line refers to the expert, and the green line the apprentice.

Figure 4.3: Primitive Policy 1

The ‘experts’ used in these cases consisted of simple heuristics, and so perhaps did

not use the best imaginable policies. The heuristics involved rules such as:

• In case of impending collision, change lanes to a side that would not result in a

collision.

• If either side is safe, choose the one with the highest terrain cost.

• If there are no impending collisions, change lanes if either adjacent lane is safe

and would provide a higher reward.
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The first element of the basis is shown in Figure 4.3. This shows that although the

expert used all the lanes, the central three lanes were preferred, with a slight skewing

to the right. The apprentice did however learn this distribution almost exactly from the

expert, and attribute 6 shows that the discrepancy in the collisions made by the two

agents was minimal – both avoided almost every other car.

Figure 4.4: Primitive Policy 2

Figure 4.4 shows the learning of the road that uses the central three lanes. In this

case, the expert completely avoided the outer two lanes, and spent the majority of its

time in the central lane. This pattern was successfully learned by the apprentice, and

again the number of collisions was kept to a minimum.

Figure 4.5: Primitive Policy 3

The split road case is shown in Figure 4.5. This is an interesting case, as it was

not possible for even the expert to avoid both collisions and leaving the paved lanes as

there were two separate single lanes. Thus, although the vast majority of time is spent

in lanes 2 and 4, all of the other three lanes were marginally used. Collisions were thus

completely avoided. The agent learned a very similar successfully from the expert,

although the number of collisions was slightly higher in this more difficult case.
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Figure 4.6: Primitive Policy 4

Figure 4.6 shows a two-lane road, consisting of the third and fourth lanes. The

expert’s policy has it using these lanes most of the time and interestingly the first lane

occasionally as well. This is likely to be a result of the random start locations and

car avoidance policy. Again the apprentice mimics the lane distribution of the expert

very closely, although favours lane 4 slightly over the expert’s choice to favour lane

3 slightly. As this would not affect the rewards, this is not a problem. Collisions are

again maintained at a minimal level.

Figure 4.7: Primitive Policy 5

The mirror image of the previous experiment is shown in Figure 4.7 which features

a two-lane road using the second and third lanes. In a similar manner to the way in

which lane 1 was used in the previous case, lane 5 is used marginally by the expert in

this case. However, the apprentice not only learns the use of lanes 2 and 3 well, but is

also less reliant on lane 5 than the expert.

The road shown in Figure 4.8 consists of a single paved lane 3. The expert is able

to avoid collisions with minimal deviations from this lane. The apprentice requires

slightly more usage of the other lanes, yet still incurs a higher cost from an increased
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Figure 4.8: Primitive Policy 6

number of collisions. This case is difficult for the agent, as it has no room to maneuver

around other cars while simultaneously staying on the paved road.

Figure 4.9: Primitive Policy 7

Figure 4.9 shows the first of the two diagonal roads in the basis. The lane use

statistics show that the expert is focused mainly on lanes 2 and 3. This is somewhat

less intuitive than the previous examples. Note that the starting location is selected at

random from the five lanes. The ideal case scenario would be for the expert to be in

lane 1 or 2 after five steps. If the expert starts in lanes 4 or 5, the policy should move

the expert to the left into lane 2. Thus it is sufficient for this agent to spent most of

the time in lanes 2 and 3 to maximise the reward. Similarly, starting in lanes 1 or 2

would require the agent to move into lanes 2 or 3 to connect with the path and proceed

as before. Thus this lane distribution is logical.

Although the apprentice seems to exhibit dissimilar behaviour to the expert, it is

actually performing similar route planning. Firstly, the learning agent spends a large

percentage of its time in the second and third lanes, as did the expert. However, a large

amount of time is spent in lane 1 as well. This is firstly because the agent receives the
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same reward for ending in lane 1 or 2, and so does not have any incentive to leave lane

1 in the latter steps. Secondly, if this agent were to start in the leftmost lanes, it would

choose to either stay there or only move as far as the second lane, as further movements

to the right (in the presence of other cars) are not likely to increase the accumulated

rewards. Again, being a more complicated case, the apprentice does not completely

reduce collisions to zero.

Figure 4.10: Primitive Policy 8

The example in Figure 4.10 shows the opposite diagonal road from the basis. The

discussion on this case is largely similar to the previous one. The expert spends the

majority of its time in lanes 3 and 4 as a result of reaching and following the diagonal

path for five steps. The use of the other lanes is primarily a result of reaching these

two lanes specifically. Again, the apprentice can be seen to use these two lanes much

of the time, as well as the fifth lane. The reason for this is the same as the argument

for it using the first lane in the previous example. Collisions are again not completely

minimised but nevertheless impressive for an agent with no prior knowledge of the

problem or task.

4.3.2 Performance of a Random Policy

The next experiment demonstrates the difference between the policy generated by the

expert (and similarly by the learning agent) compared to a random policy which does

not learn in any way.

Figure 4.11 provides this example of using a random policy where any of the three

actions of either sticking in the current lane, or moving one lane to the left or the right

are chosen with equal probabilities. The road used in this example is a three lane road,

with an extra outer lane on either side acting as an unpaved road which should be



Chapter 4. Results and Discussion 35

Figure 4.11: Results from a random policy

avoided if possible, as shown in Figure 4.11(a). This is the same example as depicted

in Figure 4.4, and as such the results are repeated for the expert and the apprentice,

where both achieve a distribution over the central three lanes peaked at the middle one,

and very few collisions.

In contrast, the performance of the random policy is shown in blue. As can be seen

in Figure 4.11(c), the five lanes are each used uniformly for 20 of the 100 steps each.

Furthermore, the number of collisions is significantly higher than that of either of the

other agents at about 10 in 100 steps. The poorer performance of this agent is clearly

shown in Figure 4.11(b) as the rewards obtained for all six features are considerably

lower than those of the other two agents, which are very similar to each other.

As can be seen from this example, the learning agent learns to perform approxi-

mately equivalently to the expert (although not always identically) and shows a con-

siderable improvement over an agent with a random policy.

4.4 Composite Skill Acquisition Results

The terrains encountered and used for policy learning in Section 4.3 are all fairly sim-

ple in that they are all examples of configurations of straight line roads devoid of any

complex features. However, for a complex task, one may expect the road to curve,

weave or change direction. This is also what would be expected from a complicated

configuration space for a robot, where there are regions which should be avoided cor-

responding to obstacles or impossible physical configurations.

This section demonstrates results of the second phase of the algorithm: synthesis-

ing primitive strategies into composite policies. These examples involve a game being

played between the learning agent and nature. The actions available to the learning
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agent are the policies learned in the previous section (or a subset of those policies in

some cases). The actions available to nature are a choice of where and how cars appear

on the road. The value of a game between these two players is the difference of the

sums of their feature expectations on that terrain. That is, the sum of the total costs

incurred by being in each lane at particular times (i.e. affected by the terrain layout)

as well as the costs from any collisions. This provides a scalar value for the game as

G(ψ,Q) for the learning agent using a strategy ψ and the environment using strategy

Q.

The composite skill acquisition experiments were conducted by generating several

new terrains and using these as input into the algorithm, together with the policies

learned for the basis shown in Figure 4.2 in Section 4.3. For some of the experiments

only a subset of this basis was used. The input roads consist of 5 lanes, but the length

of the roads are longer (such as 10 or 15 car lengths). This allows for roads which vary

in more interesting ways, and different weightings of the primitive policies are learned

for each 5×5 subsection of the entire example. The agent thus traverses the full road

length, but draws its actions from a different mixed policy after every 5 moves.

Each experiment was run for a total of 1,000 iterations. While this was not always

enough to ensure complete convergence, the experiments were terminated at this point

as a result of time constraints, and to ensure consistency between experiments. This

length of time is however sufficient to show the asymptotic convergence of the game

values to equilibria in each case.

A note on all the figures in this section. These figures all consist of four subfigures.

Figure (a) shows the layout of the road presented in that experiment. As before, the

paved section of roads allowing for easy travel are represented in gray, and the unpaved

areas that are not to be used where possible appear black. Figure (b) shows the change

in game values over the course of the experiment, with an increasing number of itera-

tions up to 1,000. The blue line refers to the first region (5×5 patch) in the composite

road, the green line the second region, and in some cases a red line for the third region.

Figure (c) shows a distribution of the lane use statistics for the policies at the final

(1,000th) iteration. The five lanes are indicated by attributes 1 through 5 on the x-axis.

Attribute 6 shows the number of collisions. As with Figure (b), the lines are coded as:

blue for region 1, green for region 2 and red for region 3 (where applicable). Finally,

Figure (d) shows the weights assigned to each element of the basis for constructing the

final policy. Mathematically, these are the weights w such that if the composite policy

ψ̃ is constructed from a combination of the basis policies Ψ, it is done according to
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the formula ψ̃ = w ·Ψ. Each weight describes the extent to which the mixed policy is

influenced by the corresponding component of the basis. The same colour conventions

are used in this figure as in Figures (b) and (c).

4.4.1 Extracting Primitive Strategies

4.4.1.1 Simple Examples

The first experiment involves determining whether or not the algorithm is capable of

fitting previously learned primitive strategies to exact replicas thereof in an unseen

terrain. This situation is shown in Figure 4.12. As can be seen in Figure 4.12(a),

this example is composed of three of the basis roads in succession: R3→ R4→ R1.

One would expect the agent to change strategies for each of three regions, and draw

primarily on the region from the basis matched to each sample region. Let the first

region, being the first 5× 5 patch, be referred to as region 1, the second as region 2,

and the third as region 3.

Figure 4.12: Extracting Primitive Strategies Experiment 1

The improvements in the game values for the three regions are shown in Figure

4.12(b) with the appropriate strategy weightings in Figure 4.12(d). In both cases, blue

indicates results for region 1, green for region 2, and red for region 3. Marked im-

provements in the game value for regions 1 and 2 can be observed as the agent learns
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to play Nash over the course of 1,000 iterations. The game value for region 3 is not

seen to show any noticeable improvement. This is a result of the fact that this region

is completely devoid of ‘unpaved’ road areas. As a result, the game value can not be

improved by choice of lanes, but only by avoiding other cars.

The weights used for the mixed policies show that the agent is exhibiting the de-

sired behaviour. Region 1 which has the split lane appearance of R3 is indeed solved

by the agent drawing primarily on the policy generated by learning from the expert in

phase one on R3. Region 2 is a two-lane stretch of road as is R4. The agent learns

to construct its new strategy for this region from the strategies learned for R4 as well

as R6, where R6 consists of a single lane only. These are the two roads in the basis

which coincide with region 2. On the other hand, region 3 draws fairly uniformly from

all eight basis roads. This is a result of the fact that region 3 has no distinguishing

features, and although it appears exactly as R1, the strategies learned for any of the

primitive roads would suffice with equivalent performance on this surface.

Figure 4.12(c) shows that with the final mixed policy all three regions maintained

a low collisions score. Furthermore, region 1 used primarily lanes 2 and 4 (the paved

lanes). The policy for region 2 relied mainly on the central lane, as advocated by

policies R4 and R6, but relied far more on lane 4 than lane 2 as a result of R4. The lane

distribution for region 3 peaks about the central lane, rather than being uniform, as a

result of drawing almost uniformly from the basis which consists of several policies

which place an emphasis on the central lanes.

This experiment thus shows a successful retrieval of exact primitive strategies from

a composite road.

4.4.1.2 More Challenging Examples with Basis Restrictions

The next three experiments are all concerned with a road consisting of two regions,

and composed as R7→ R8. These experiments were an extension of the first, and

attempted to determine the way in which the algorithm would recreate slightly more

challenging examples, with various restrictions on the basis. These are considered

more challenging as the basis consisted primarily of straight roads, and it would pro-

vide useful insights observing the response of the algorithm to the diagonal roads.

The first of these, shown in Figure 4.13, attempts to solve R7→ R8 (shown in

Figure 4.13(a)) using only the basis {R7,R8}. Figure 4.13(c) shows from attributes

1 to 5 that an approximately uniform distribution of the five lanes was used, slightly

pitched at the centre, as would be expected from the basis strategies R7 and R8 which
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Figure 4.13: Extracting Primitive Strategies Experiment 2

use all the lanes at various points. The left side of Figure 4.13(d) corresponds to R7 and

the right side to R8. This figure thus shows in blue that the policy for R7 was correctly

used as the dominant policy for the first region, and the weights in green show that the

policy R8 was considerably more heavily relied upon in constructing a policy for the

second region. Interestingly, the game values do not improve considerably in either

region after many iterations. Some possible reasons for this are discussed below.

The next experiment, seen in Figure 4.14, shows the results of the same road R7→
R8 with the correct elements of the basis removed, and instead the basis consists of

{R1, . . . ,R6}. This experiment was to establish whether or not the same results could

be established from a different basis. As can be seen in Figure 4.14(d), the policies for

both region 1 (blue) and region 2 (green) were constructed from those used for R2, R4

and R5. This seems a logical choice for the composition (from the options available)

as all three basis roads are based on the central lane with some deviation to one or both

sides. They also draw on the strategy for the split lane R3. Together these strategies

allow the agent to navigate the diagonal paths. The fact that these basis components

focus on the centre three lanes is reflected in the lane use statistics focusing primarily

on these lanes in Figure 4.14(c).

Finally the agent was presented with the same road R7→ R8 and allowed to draw
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Figure 4.14: Extracting Primitive Strategies Experiment 3

Figure 4.15: Extracting Primitive Strategies Experiment 4

from any of the strategies from {R1, . . . ,R8}. This was to observe the effects when the

two candidates for suitable policies from the previous two experiments were combined.

The results of this experiment were rather interesting. The agent reconstructed the
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same relative weightings between the first six basis components as was seen in Figure

4.14(d), and between the last two components as seen in Figure 4.13(d). The surprise

here was that the first six components were counter-intuitively emphasised much more

in the mixed policy than the last two, which perfectly describe the example.

There are several reasons that could explain this. Firstly, the start location of the

agent was selected randomly from the 5 lanes in each iteration. As a result, the agent

was likely to begin on an unpaved section of road. It could thus take the agent several

moves to reach the paved area, by which point any strategy would be useful. Further-

more, this was confounded by the fact that the regions are rather small (5× 5). If the

agent were to stick completely to the central lane, it would be driving on paved roads

6/10 = 60% of the time. By invoking minimal lane changes, which could be provided

by most of the strategies in the basis, the agent could be driving primarily on paved

road. As a result, not only would this make R7 and R8 redundant, but the fact that they

may not be useful for certain start locations may result in alternate strategies being

favoured.

4.4.2 Strategies on New Roads

4.4.2.1 Unseen Roads

Having ascertained that the algorithm is capable of extracting exact primitive strategies

from composite roads, the next set of tests involve observing performance of the algo-

rithm on a composite road which has a different topology to all of those roads present

in the basis. This is a test of the robustness of the algorithm, and whether or not it is

capable of finding novel strategies for new terrains.

The first of these experiments involves a road which narrows from 5 lanes down to a

single lane, and then widens again, as seen in Figure 4.16(a). An important observation

to make is that in this experiment, region 1 and region 3 are very similar. Both are

essentially R1 with a slight narrowing at either the beginning or the end. On the other

hand, region 2 is completely different, with significant narrowing in the centre so as to

resemble R6. This similarity between regions 1 and 3 is identified by the algorithm,

which constructs very similar policies, as is seen by the blue and red plots in Figure

4.16(d). As was the case with the third region in the first experiment, these regions have

policies which are composed almost uniformly from all the strategies in the basis. An

exception to this is R1. This is because the areas to be avoided are minimal, and so

different strategy selection would not make a considerable difference to performance,
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Figure 4.16: New Scenario Experiment 1

except for R1 which would use those areas. Also, for the same reasons, similarly

to the first experiment, the game values for these two (blue and red) regions do not

improve with more iterations. The two diagonal policies are not found to bear much

resemblance to these regions either, as they use the corners and either draw the agent

to or from undesirable areas.

There is more to be learned by the agent in region two, as the narrowing implies

that the mixed policy has less freedom in choosing lanes. This learning is reflected

in the fact that the game value for this region increases with additional training. The

mixed policy for this region rejects the use of the strategies from the ‘wider’ road of

R1 as it is insufficient for dealing with the narrowing. Instead, the ‘two lane’ policies

from R4 and R5 are used, but the largest weighting is contributed by the single lane

policy of R6. This is to be expected, as it is the case which most closely resembles the

bottlenecked region.

The distributions of the lane usage in Figure 4.16(c) reflects the choice of policies.

The blue and red lines corresponding to regions 1 and 3 respectively have a distribution

primarily over the central three lanes, whilst the green distribution of region 2 spikes

mainly on the one centre lane.

The next example is the inverse of the previous one. This, as seen in Figure 4.17(a),
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consists of a single lane road which broadens into a five lane road before narrowing

again to just a single lane. As was the case with the previous example, regions 1 and 3

are fairly similar, and this is recognised by the algorithm which devises a very similar

mixture of policies for these two regions.

Figure 4.17: New Scenario Experiment 2

The fact that region 2 has unpaved areas at all four corners means there is still

some, however limited, scope for learning. This is reflected in the fact that the green

line in Figure 4.17(b) shows a very gradual increase in the game value. This increase

is more marked in the blue and red graphs for regions 1 and 3 – the areas with consid-

erable narrowing. As seen in Figure 4.17(d) the policies for these regions are drawn

mainly from the single lane policy of R6. The policy for region 2 is composed almost

uniformly from the first six components of the basis (excluding the diagonals). In fact,

the weights assigned to the various policies in the basis for region 1 and 3 are very

similar to those for region 2 in the previous example, and similarly those for regions 1

and 3 in the previous example are very similar to region 2 in this example.

The choice of policy obviously has a strong impact on the lane usage statistics.

Regions 1 and 3 show, in blue and red respectively in Figure 4.17(c), large spikes

about the central lane – the focus of the narrowing of the road. Conversely, the green

of region 2 is more evenly distributed about the five lanes.
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Again, it can be seen from the rightmost endpoint in Figure 4.17(c) (attribute 6)

that the number of collisions in all three regions is low. They are however marginally

higher for both regions 1 and 3 than for region 2. This is a result of the fact that the

road narrows to a single lane, and so the policy is more reluctant to leave the road for

an unpaved and unfavourable area.

Where the previous examples were symmetric about the central lane, the next ex-

ample in Figure 4.18 has the road following a more skewed shape over the three re-

gions.

Figure 4.18: New Scenario Experiment 3

The first region in this example, seen in Figure 4.18(a) shows a slightly skewed

two lane road. The basis policies used to form a strategy for this example are R2

which uses all three lanes present in the region, R4 and R5 which use two of the three

lanes, but the second lane is used more than the fourth and so R5 is weighted more

heavily, and the single lane R6 which is logical as the entire single lane is available in

this region. The results of using this distribution is shown in Figure 4.18(c) as a spike

about the central three lanes. As this distribution is learned, the game value increases

considerably towards equilibrium in Figure 4.18(b).

Region 2 in this example has the valid area of road curved slightly and to the right

of the centre. The green weights in Figure 4.18(d) show that the solution policy is
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based largely on R4 and R8. This seems the best choice from the options available,

as R4 is the two lane road to the right, and R8 is the diagonal road moving towards

the right. Learning this distribution does move the game value towards equilibrium

(green), but it is not as high as that for the first region, as a result of the basis not

being particularly well suited to this example. However, it still manages to capture the

topology well, and as shown in Figure 4.18(c), learns to use lanes 3 and 4 most of the

time.

The third region has the road widening to three lanes and returning to the centre.

As mentioned before, when the road is wider there is less of a steep increase in game

value (red line), as the agent has less to gain by altering strategies. The main strategies

used in this case are from R2, R4 and R6, corresponding to three lanes, two lanes to

the right, and a single lane respectively. This gives the required distribution focusing

on lanes 3 and 4.

4.4.2.2 Symmetric Cases of Diagonal Regions

The following four experiments are designed to ensure that the results being generated

by the algorithm are consistent between examples. To show this, the roads in the

experiment consist of the four permutations of having either a diagonal line from the

top left to the bottom right, or from the top right to the bottom left, and then either the

left or right side of the diagonal is paved, while the other half is unpaved. One would

then expect the results arising from the four policies to have certain similarities and

symmetries.

The first two cases are a right-to-left diagonal with the rightmost portion paved

(Figure 4.19(a)) and a left-to-right diagonal with the leftmost portion paved (Figure

4.20(a)). These two instances correspond to a situation where the usable portion of the

road starts off narrow as just a single lane to one side and then broadens to fill four of

the five lanes. In both cases the game values show improvement towards equilibria, but

the values for the second regions (green) are both considerably higher than those for the

first regions (blue). This is a result of the fact that the first regions are far narrower, and

allow the agent less room for maneuvering to avoid collisions. The agent subsequently

does not perform as well in these regions.

The lane usages in Figure 4.19(c) shows a skewed distribution peaked around the

fourth and fifth lanes for the first region (and to a lesser extent the third lane, for car

avoidance), with a less skewed distribution on the third, fourth and fifth lanes for the

second region – approximately as would be expected given the distribution of paved
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Figure 4.19: Diagonal Experiment 1

road seen in this example. Similarly, Figure 4.20(c) shows the skewed distribution

peaked at lanes 1 and 2 in the first region and lanes 1, 2 and 3 in the second.

Figure 4.20: Diagonal Experiment 2
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Figure 4.19(d) shows that the policy synthesised in that experiment is based pre-

dominantly on the one for R8. At a first glance, this is a rather surprising and counter-

intuitive result. However, consider that the basis is rather limited and not complete,

and the only other element of the basis which uses the fifth lane is R1 – which would

incorrectly use the rest of the region as well, thereby incurring great costs. Also, the

starting location of the agent is selected randomly. If it starts to the left, in the unpaved

region, then using R8 would draw it towards the paved region on the right. As a result,

the choice of this policy does make sense. Similarly, by the exact symmetric argument,

the policy used for the first region in the experiment shown in Figure 4.20(d) is R7.

Now consider the policy for region 2 in Figure 4.19(d). The green weights provide

a jigsaw pattern, showing a policy composition from R2, R4, R6 and R8. The use of

the first three of these components is logical, in that they are the policies which deal

with narrower regions with an emphasis to the right from R4. R8 has the same function

as in the first region, in that it would draw the agent from the unpaved area on the left

towards the right. Again, a similar policy can be seen for the second example in Figure

4.20(d). The symmetric basis policies, R2 and R6 are used here too, as well as the

mirror images R5 and R7 of the other two.

The final two experiments consist of a left-to-right diagonal with the right side

paved (Figure 4.21(a)) and a right-to-left diagonal with the left side paved (Figure

4.22(a)). These two cases correspond to a narrowing from four lanes to a single lane.

As with the previous pair of experiments, both regions in both these experiments

showed an improvement in game value to equilibrium. This time, in both cases, the

game value for the first region (shown in blue) is considerably better than that of the

second region (shown in green). This is a result of the first region having a wider

section of paved road, and therefore more maneuvering options to avoid collisions,

and subsequently fewer collisions.

Figure 4.21(c) illustrates that lanes 3 and 4 are the lanes that are used the most by

the mixed policy in the first region for the first of these experiments. In the second

region, the fourth and fifth lanes are used more than any of the others, with the third

lane receiving high usage as well. This is not ideal, but a result of the narrowing of

the road, and thus a restricting of the options available for avoiding other cars. A

symmetric case can be seen for the next experiment in Figure 4.22(c). This shows that

in the first region lanes 2 and 3 are used primarily, whereas the distribution focuses on

the first three lanes in the second region. The lane usage distributions thus match the

paved road distributions fairly closely.
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Figure 4.21: Diagonal Experiment 3

Figure 4.22: Diagonal Experiment 4

The weight distributions in Figure 4.21(d) are nearly identical to those of Figure

4.19(d), except with the regions reversed. Thus, for the first region, the weights favour

the policies corresponding to R2, R4, R6 and R8. Again, the first three of these repre-
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sent straight lane road layouts, with the bulk of the road in the centre or to the right, and

not too wide. In this case R8 has a diagonal in the same direction as the road, and so is

useful for drawing the agent from the left to the right. The weights for Figure 4.22(d)

similarly use the symmetrical weights R2 and R6, as well as the mirror image basis

components R5 and R7, and thus has a very similar policy to that in Figure 4.20(d)

(with the regions reversed).

Now consider the weight distributions for the second regions. As was the case in

Figures 4.19(d) and 4.20(d), the weights for region 2 in Figures 4.21(d) and 4.22(d)

correspond to relying almost exclusively on R8 and R7 respectively. In Figure 4.21(d),

the effect of the policy from R8 is to draw the agent from the left to the right, along the

same diagonal as the edge of the paved road. The converse is true in Figure 4.22(d). In

this case, the policy arising from R7 in the basis, draws the agent to the left, and away

from the unpaved area.

The policies from the wider regions in Figures 4.19 and 4.21 are very similar,

because these patches of road are similar. The same holds for the narrow regions in

these examples, and consequently the lane use statistics. The same similarities exist

between Figure 4.20 and Figure 4.22.

As can be seen, even with a potentially inadequate basis, the algorithm is able to

construct policies which can be used for successfully navigating a variety of unseen

terrains. A more sophisticated basis may have included roads at various other angles,

but this set of experiments show that even a smaller basis can suffice for reconstruct-

ing complex strategies. The fact that mirror image policies were generated in pairs of

examples which were mirror images of each other confirms that the strategies are con-

sistent in the way they are constructed. Furthermore, in every experiment, the choices

made by the algorithm for primary constituents of the mixed policies can be manually

justified and confirmed to be logical choices. The algorithm could thus be said to be

accomplishing its task of synthesising strategies successfully.

4.5 General Composite Policy Performance

The previous sections describe the results of the operation of the algorithm. Section

4.3 first provides examples of the algorithm learning from experts to create a basis

of eight policies. Then Section 4.4 demonstrates the composition of these primitive

policies into composite policies on particular complex examples of road. It remains

to assess the performance of these synthesised strategies on the roads for which they
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were generated, compared to the performance of the primitive strategies on the same

roads.

There are two aspects of the performance of a policy which have been implicit in

defining and improving the policies, and these are also useful for assessing the perfor-

mance. When running a policy on a road, two averages were generated: the average

number of times the policy deviated from paved road per time step, and the average

number of collisions per time step.

Figure 4.23: Experiment Road Set

For these experiments, a policy was trained on each of the eleven boards shown in

Figure 4.23, all of which were five-lane roads. The first five of these roads, marked (a)

to (e), are short templates, sized 10×5. The roads marked (f) to (i) are medium sized



Chapter 4. Results and Discussion 51

at 15×5. The policies for all nine of these had already been generated in Section 4.4.

Finally, an additional two policies were trained, one for each of road (j) and (k) – the

long roads, of length 30 and 45 respectively.

Both the full contingent of eight primitive basis policies, and the composite policy

trained specifically for that road were run repeatedly on each of these eleven roads for

4,500 time steps. The average number of times each policy deviated from the paved

section of the road per time step (the accuracy of the policy), as well as the average

number of collisions per time step were calculated and recorded for each of the nine

policies on each of the eleven roads. The accuracies are presented in Table C.1 and the

collisions in Table C.2, both in Appendix C.

Figure 4.24: Performance – policy accuracy

Figure 4.24 plots the accuracy of the nine policies, as well as the average of the

eight primitive policies. It is not necessary to differentiate between these primitive

policies in this figure. As the figure records deviations from the paved section, the

lower the value, the better. The x-axis, representing the different roads, has them

sorted by increasing length.

As can be seen in this figure, the mixed composite policy acts as an approximate
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loose lower bound on the performance of the primitive policies, and is considerably

better in accuracy than the average of the primitives. This shows that the composite

strategy is consistently among the candidates for most accurate policy.

First consider the performance of the policies on the first five roads: those of length

10. The first road has the accuracies of all policies tightly packed around 0.4125. As

such, none of the basis policies are particularly accurate on this road. As this is the

same road that was used in the experiments shown in Figures 4.13, 4.14 and 4.15, this

would explain why the Strategy Composition Algorithm was unable to learn a strategy

which was much of an improvement over the basis policies in those examples. The

next four roads are those from the diagonal cases of Figures 4.19, 4.20, 4.21 and 4.22.

In each of these, only one primitive policy can be seen to outperform the composite

policy in Figure 4.24, and it performs considerably better than the rest of the policies.

The next set of four roads are the medium length roads which were used in experi-

ments in Section 4.4, and are reproduced in Figure 4.23 (f) to (i). In the first of these,

Road 6, the mixed policy performs better than any other policy. In the subsequent three

experiments, Roads 7, 8 and 9, the mixed policy performs almost on a par with the best

performing of the primitive strategies on those roads.

Now consider the two long roads, Roads 10 and 11. In both these cases, the com-

posite policy outperforms all other policies, with the margin of accuracy between the

composite and primitive policies slightly larger in the longer of the two roads.

The result of these observations, is that the shorter roads show the composite policy

to perform better than the majority of, but not all, the primitive policies, the medium

roads show a similar accuracy between the composite and primitive policies, and as

the roads lengthen, the composite policies improve compared to the primitives and

ultimately outperforms them. The reason for this is intuitive. The shorter a road tem-

plate, the more likely it is that it will closely match one of the primitive roads. If one

of these primitive policies were to perform better than the other primitives on both re-

gions of a two-region road, it is likely that the composite policy would learn to be based

predominantly on that policy, and may still be outperformed by that policy. However,

with a longer road comes less of a chance of one of the basis policies performing well

continuously, and that provides the composite policy with an opportunity to draw on

elements of different components of the basis at different times for improved results.

The second important property which is used to measure the performance of poli-

cies is the average number of collisions with other cars per time step. These results

for all nine policies on all eleven roads are displayed in Figure 4.25. This figure shows
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Figure 4.25: Performance – policy collisions

three ‘bands’ of results. The ‘lower’ band has values averaging around 0.0111 for all

roads, and the ‘higher’ band averages 0.0548. The ‘central’ band corresponds to the

mixed policy. Again, lower values are obviously better.

As it turns out, the primitive policies in the ‘lower’ band are policies corresponding

to R1, R2, R4 and R5. These are the ‘broad’ policies, as they have two or more adjacent

lanes that are paved. This means the policy is less likely to leave the road to avoid a

collision and so, if collisions and deviating from the paved road are equally ‘bad’,

these policies will tend to have less collisions as it is easier for them to avoid collisions

without incurring terrain-based costs.

Conversely, the policies contributing to the ‘higher’ band are those corresponding

to R3, R6, R7 and R8. These are the ‘narrow’ policies, because they do not consist

of long segments of several adjacent lanes. As such, avoiding collisions is likely to

involve leaving the paved areas of road and are penalised for doing so. Consequently,

the number of collisions is higher for these policies.

The composite policy sits in a ‘central’ band between results of the ‘broad’ and

the ‘narrow’ policies. It is clearly influenced almost equally by the two groups, with
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the exact proportions thereof depending on the road. Although lower values would be

preferred, the margin between the ‘higher’ and ‘lower’ band is small and the number of

collisions are bounded by the primitive policies. Clearly there are trade-offs between

accuracy and collisions in the creation of the policies, and is a consequence of the fact

that neither property is indicated to the agent to be better or worse.

4.6 Conclusion

The algorithm described in Chapter 3 was implemented in MATLAB and a series of

experiments were run to empirically demonstrate the performance of the algorithm,

as documented in this chapter. The domain of the experiments used for this purpose

was described in Section 4.2 as being a car navigating down a 5-lane road. The car

has two different sets of conditions to endure. The first is that certain sections of the

road are paved whilst others are not, yielding high and low rewards respectively. This

corresponds to different surfaces or topologies of a manifold. The second is that there

are other cars around which the agent should navigate, in order to avoid collisions.

These cars are generated by nature and represent disturbance processes acting on a

surface.

Section 4.3 was concerned with the first stage of the algorithm: learning primitive

policies from an expert. A set of eight examples was used, and it was shown that

the apprentice could achieve similar performance to the expert in terms of both lane

distributions and collisions. The effectiveness of this learning policy was made even

more apparent by the comparison to the performance of a random policy, which was

significantly inferior to both the learning agent and the expert.

The second stage of the algorithm, dealing with the synthesis of primitive strate-

gies was demonstrated in Section 4.4. The first experiments showed that the algorithm

could recover the primitive strategies corresponding to roads in the basis, which were

contained as sub-roads within a longer road. This was accomplished using various

subsets of the basis. The algorithm then proceeded to generate novel strategies for un-

seen roads. The primary components of these mixed strategies were generally intuitive

and logical choices. The algorithm also behaved as expected when presented with mir-

rored examples which correctly generated symmetrical results. Some difficulties were

encountered, particularly with a unexpected use of the diagonal elements of the basis.

This can be traced to the fact that the elements of the basis were in no way orthogonal

and the basis was thus imperfect. However, this does demonstrate that the algorithm is
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adaptable in that it will still find a solution to a presented problem.

The results in Section 4.5 show that the accuracy of the composite policies act

as loose lower bounds on the accuracy of the primitive policies. Furthermore, as the

length of the unseen road increases, the accuracy of the composite policy surpasses

those of all the primitive policies, rendering it the superior policy. Additionally, al-

though the composite policy can not boast the lowest number of collisions per unit

time, it is tightly bounded by the same performance metric of the constituent primitive

policies.

The following chapter summarises the important points contained in this document

and provides insight into future work to be pursued by the author.
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Conclusion

Being able to learn new skills, and then adapt these skills to new situations, is one of

the fundamental abilities of humans. This is thus a behaviour that would be useful to

bestow on robots: increasing their versatility and scope for usefulness. Of the different

ways to transfer the knowledge of different skills to a robotic agent, teaching by means

of a demonstrating expert is a practical one. A human with some expert knowledge

of a skill could demonstrate this skill in various settings to a robot, which would then

learn to reproduce those behaviours and actions.

Apart from simply learning the trajectories required to perform a certain skill in

particular scenarios, a robot should be able to apply that skill in new environments

with unanticipated conditions. It is not practical to assume that an expert would be on

hand to demonstrate the skill in every new scenario the robot encounters. To overcome

this, the robot itself must be able to draw on previously acquired knowledge to establish

a method for handling the new conditions.

The algorithm developed through the course of this research was inspired by the

aforementioned ideals: to have a learning mechanism whereby a robot could learn a

task in particular situations by observing an expert agent, and then compose this knowl-

edge to deal with new conditions. The algorithm thus consists of two phases; one for

learning primitive strategies and a second for composing them into composite strate-

gies. This is inspired by the concept of learning from a curriculum and providing an

agent with different tasks which can be hierarchically combined to handle more com-

plex cases. This is all done whilst the agent is in the presence of adversarial processes

in the form of the environment, which formulates the problem as a two-player game.

The method whereby this is accomplished is based on a combination of concepts

from the fields of game theory and reinforcement learning. The reward function for

56
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the MDP representing the state and action space of the skill is learned from the expert

through a multiplicative weights technique, and then the optimal policy is approxi-

mated using Monte Carlo policy iteration. For the synthesis phase, the strategies are

combined into a single mixed policy using a similar regret minimisation technique to

adjust the contribution of each policy in the basis, depending on the success of that

policy on the unseen scenario. The result is a single policy formed from the primi-

tive policies, which best handles the new scenario and any random disturbances placed

thereon.

Chapter 4 provides a sample domain for demonstrating the success of the algo-

rithm. This takes the form of a traffic avoidance problem, where an agent is required

to avoid collisions with other vehicles on a multi-lane road, and at the same time avoid

leaving the paved areas of road for unpaved ones where possible. The topology of

this road changes at various points along its length, in terms of the paved and unpaved

areas. This is equivalent to a complicated topology on an abstract manifold in config-

uration space.

The results in this chapter demonstrate that in the first phase of the algorithm, the

agent is able to learn optimal policies for navigating roads in the basis from the expert,

such that both the apprentice and the expert use a similar distribution of the lanes

throughout the course of one driving episode. The collisions made by the apprentice

are also kept to a minimum.

In the second phase of the algorithm, the agent is able to successfully extract the

appropriate primitive strategies from a composite one consisting of several primitive

strategies connected together. It can also compose the primitive strategies successfully

to navigate other completely unseen terrains and converge on an equilibrium which

results in minimising both collisions and departures from the paved sections of the

road. Even though the agent was not provided with a basis which may be considered

complete in any sense, the agent is still able to draw on these strategies to increase its

robustness and flexibility with respect to creating novel strategies for new situations.

It was also shown that the accuracy of the composite strategies are improvements

over those of the primitive strategies on long roads, in terms of the number of devia-

tions from the paved sections of the road. Furthermore, the composite policy accuracy

is an approximate and loose lower bound on the accuracy of its constituent policies.

The number of collisions of the composite policy is not as low as for some of the prim-

itive policies, but this score remains bounded both above and below by the primitive

policies. Considering these facts, the composite policy is an improvement over the
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primitive policies for the unknown scenarios.

This work is merely a single step towards a complete system which can learn a skill

in different settings from an expert, then synthesise these to handle any new scenario

to ensure total robustness of the newly acquired skill, and finally draw on previously

learned skills to ease the learning of different skills.

Within this framework, there is thus much scope for future work. The first chal-

lenge that will be considered in extending the work presented within this document

will be to examine methods for reducing the state space dimensionality, both by means

of techniques such as PCA and with different representations. This is because large

tasks become exponential in the number of states required for their representation,

which makes it infeasible to compute optimal policies. One approach to this may be

to consider model predictive control (MPC) and, instead of learning weights for the

primitive strategies at discrete patches of the problem domain, learning the weights as

a continuous function over the state space.

Other extensions to this work would be to consider that different instances of the

skill may have varying state and action spaces. An agent may start the learning process

in a very simple setting with few actions available to it, but once it masters this setting,

the number of available actions increase. Furthermore, in the synthesis phase, it may

be worth investigating whether or not an expert could be employed in some situations

to guide the mixing of these strategies, as an intermediate step in the hierarchy.

One last extension to consider would be a method for amalgamating all the acquired

information. The system in its current form is merely a learning system. If this was

implemented on a robot, that robot would need to be able to recognise the scenarios on

which it has trained so that it knows when it would be appropriate to invoke the correct

strategy to complete the required task. In other words, the system should be able to

easily recognise a problem it has already solved.

The research described in this document presents a novel approach to learning from

demonstrating by posing the learning problem as a game, and then drawing on curricu-

lum learning to learn a structured strategy which is robust to changes in conditions and

adversarial environmental disturbances. The result is an algorithm which is capable

of learning a new skill, and adapting it from the ‘classroom examples’ taught by the

expert to situations that are encountered in the unsupervised operation of the agent.
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Appendix A

Code for Algorithm Phase 1

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Main Primitive Learning Function %

3 % Input: terrain reward function %

4 % Output: policy , weights , features (both agents), stats %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [policy , weight , mu, mu_e , stats] =

7 learnprimitive(terrain)

8

9 % Initialise parameters

10 params = setParams(terrain);

11

12 gamma = params(1);

13 T = params(2);

14 M = params(3);

15 MAXSTATES = params(4);

16 MAXACT = params(5);

17 FEAT_SIZE =

18 length(features(getStartState(params), params));

19 stats_e = zeros(1, FEAT_SIZE);

20 stats = stats_e;

21

22 % Simulate with the expert to create features

23 mu_e_temp = [];

24 for m = 1:(5*M)

25 s0 = getStartState(params);

26 [mu_t , state_t , act_t , stats_t , params] =

27 simulate(s0, params , 0);

62
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28 mu_e_temp = [mu_e_temp; mu_t];

29 stats_e = stats_e + stats_t;

30 end

31 mu_e = sum(mu_e_temp )/(5*M);

32 stats_e = stats_e / (5*M);

33

34 % Initialise apprentice policy

35 policy = ones(MAXSTATES , MAXACT)/MAXACT;

36 Q = zeros(MAXSTATES , MAXACT);

37 Rets = zeros(MAXSTATES , MAXACT , 2);

38

39 % MWAL algorithm

40 k = length(mu_e);

41 beta = 1/(1+sqrt(2*log(k)/T));

42 W = ones(1, k);

43 for t = 1:T

44 weight(t,:) = W(t,:)/sum(W(t,:));

45 % Update policy P(t) - Monte Carlo RL

46 [policy , Q, Rets] =

47 MC_RL(weight(t,:), policy , Q, Rets , params);

48 mu_temp = [];

49 s_t = zeros(1, FEAT_SIZE);

50 % Estimate features mu(policy)

51 for m = 1:M

52 s0 = getStartState(params);

53 [mu_t , state_t , act_t , stats_t , params] =

54 simulate(s0, params , policy);

55 mu_temp = [mu_temp; mu_t];

56 s_t = s_t + stats_t;

57 end

58 stats = stats + s_t;

59 mu(t,:) = sum(mu_temp)/M;

60 % Update weights

61 W(t+1,:) =

62 W(t,:).*exp(log(beta)*game([1:k],mu(t,:),mu_e ,gamma));

63 end

64 stats = stats/(T*M);

65 stats = [stats_e; stats];

66

67 end

68

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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70 % Function to Return the Game Value %

71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72 function G = game(i, mu, mu_e , gamma)

73 G = ((1-gamma)*(mu(i) - mu_e(i))+2)/4;

74 end

75

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77 % Monte Carlo RL to optimise policy %

78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

79 function [P, Q, Rets] = MC_RL(w, P, Q, Rets , params)

80

81 M = params(3);

82 MAXSTATES = params(4);

83 MAXACT = params(5);

84

85 for m = 1:M

86 s0 = getStartState(params);

87 % Generate episode

88 [mu, state , actions , temp , params] =

89 simulate(s0,params ,P);

90 for j = 1:length(actions)

91 s = state(j);

92 a = actions(j);

93 R = reward(state(j+1), w, params);

94 % Record returns

95 Rets(s,a,1) = Rets(s,a,1) + R;

96 Rets(s,a,2) = Rets(s,a,2) + 1;

97 % Update Q values

98 Q(s,a) = Q(s,a) + 1/Rets(s,a,2)*(R - Q(s,a));

99 end

100

101 e = 0.01;

102 for q = 1:MAXSTATES

103 % Select best actions

104 [ig, best] = max(Q(q, :));

105 if sum(Q(q,:) == ig) > 1

106 ind = find(Q(q,:) == ig);

107 r = ceil(rand*length(ind));

108 best = ind(r);

109 end

110 % Soft policy

111 P(q, :) = e/MAXACT;
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112 P(q, best) = 1 - e + e/MAXACT;

113 end

114 end

115

116 end

117

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119 % Function to Return the Reward for a State %

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

121 function R = reward(state , weight , params)

122 R = weight * features(state , params)';

123 end

124

125 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

126 % Function to Initialise Parameters for Road Example %

127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

128 function params = setParams(terrain)

129 gamma = 0.99;

130 NUMLANES = size(terrain ,1);

131 DISTROAD = size(terrain ,2);

132 T = 100;

133 M = 100;

134 MAXSTATES =

135 prod([NUMLANES , DISTROAD , (DISTROAD+1)ˆNUMLANES]);

136 MAXACT = 3;

137 params = [gamma T M MAXSTATES MAXACT NUMLANES DISTROAD

138 reshape(terrain', 1, numel(terrain))];

139 end

140

141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142 % Function to Select Random Start Lane %

143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

144 function s0 = getStartState(params)

145 NUMLANES = params(6);

146 s0 = ceil(rand*(NUMLANES));

147 end

148

149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

150 % Function to Simulate Road Example %

151 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

152 function [mu, state , actions , stats , params] =

153 simulate(s0, params , policy)
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154

155 gamma = params(1);

156 T = params(2);

157 NUMLANES = params(6);

158 DISTROAD = params(7);

159

160 % Initialise road and cars

161 roadtemp = zeros(DISTROAD , NUMLANES);

162 road = roadtemp;

163 lane = s0;

164 dist = 1;

165 cars = zeros(1, NUMLANES);

166 tcars = num2cell(cars+1);

167 tslane = ones(1, NUMLANES)*(DISTROAD+1);

168 state = sub2ind([NUMLANES ,DISTROAD ,tslane],lane ,dist ,tcars{:});

169 actions = [];

170 stats = zeros(1, NUMLANES+1);

171

172 for i = 1:T

173 % Move along road

174 road = [zeros(1, NUMLANES); road(1:DISTROAD -1, :)];

175 % Generate new cars

176 o_cars = cars;

177 if (rand > 0.5)

178 k = ceil(rand*NUMLANES);

179 road(1, k) = 1;

180 end

181 [ig, cars] = max(flipud(road));

182 cars = DISTROAD + 1 - cars;

183 cars(ig == 0) = 0;

184 o_lane = lane;

185

186 if length(policy) == 1

187 % Expert policy

188 if DISTROAD - cars(lane) == 0

189 if lane == 1

190 if DISTROAD - cars(2) ≥ 1

191 lane = 2;

192 else

193 lane = 1;

194 end

195 elseif lane == NUMLANES
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196 if DISTROAD - cars(NUMLANES -1) ≥ 1

197 lane = NUMLANES -1;

198 else

199 lane = NUMLANES;

200 end

201 else

202 r = ceil(2*rand);

203 k = (-1)ˆr;

204 if DISTROAD - cars(lane+k) ≥ 1

205 lane = lane+k;

206 else

207 lane = lane -k;

208 end

209 end

210 end

211 else

212 % Apprentice policy

213 tcars = num2cell(o_cars+1);

214 tslane = ones(1, NUMLANES)*(DISTROAD+1);

215 st =

216 sub2ind([NUMLANES ,DISTROAD ,tslane],

217 lane ,dist ,tcars{:});

218 r = rand;

219 act = 0;

220 while r > 0

221 act = act + 1;

222 r = r - policy(st, act);

223 end

224 lane = lane + act - 2;

225 lane = min(max(lane , 1), NUMLANES);

226 end

227

228 % Record state

229 tcars = num2cell(cars+1);

230 tslane = ones(1, NUMLANES)*(DISTROAD+1);

231 st =

232 sub2ind([NUMLANES ,DISTROAD ,tslane],lane ,dist ,tcars{:});

233 state = [state; st];

234 actions = [actions; (lane -o_lane)+2];

235 dist = mod(dist , DISTROAD) + 1;

236

237 stats(lane) = stats(lane) + 1;
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238 if cars(lane) == DISTROAD

239 stats(end) = stats(end) + 1;

240 end

241 end

242

243 % Compute feature vector

244 mu = zeros(size(features(state(1), params)));

245 for t = 0:length(state)-1

246 mu = mu + gammaˆt*features(state(t+1), params);

247 end

248

249 end

250

251

252 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253 % Function to Compute Feature Vector for Road Example %

254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

255 function ft = features(state , params)

256

257 NUMLANES = params(6);

258 DISTROAD = params(7);

259 terrain = params(8:end);

260 terrain = reshape(terrain , DISTROAD , NUMLANES)';

261

262 tslane = ones(1, NUMLANES)*(DISTROAD+1);

263 cpos = num2cell(zeros(1,NUMLANES));

264 [lane ,dist ,cpos{:}] =

265 ind2sub([NUMLANES ,DISTROAD ,tslane],state);

266 % Reward lane use

267 ft = [zeros(1, NUMLANES) 0.5];

268 ft(lane) = terrain(dist , lane);

269 % Penalise collisions

270 if cpos{lane} == DISTROAD+1

271 ft(NUMLANES+1) = -1;

272 end

273

274 end
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Code for Algorithm Phase 2

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Main Composite Learning Function %

3 % Input: terrain reward function %

4 % Output: policy , game value , stats , weights %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 function [policy , res, stats , weights] =

7 compose_policies(terrain)

8 % Load basis

9 load('basepolicies.mat');

10 [POLICIES , STATES , ACTIONS] = size(basis)

11

12 % Initialise parameters

13 params = setParams(terrain);

14 boards = params(end -1)/params(7);

15

16 T = 300;

17 k = POLICIES;

18 beta = 1/(1+sqrt(2*log(k)/T));

19 % Initialise weights

20 W = ones(boards , k);

21 for i = 1:boards

22 weights(i,:) = W(i,:)/sum(W(i,:));

23 end

24 res = [];

25 stats = [];

26 for t = 1:T

27 w_o = weights;

69
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28 % Update policy

29 for j = 1:boards

30 policy(j,:,:) = weights(j,1) * basis(1,:,:);

31 for i = 2:POLICIES

32 temp(:,:) = weights(j,i) * basis(i,:,:);

33 policy(j,:,:) =

34 policy(j,:,:) + reshape(temp , [1 size(temp)]);

35 end

36 end

37

38 % Test policy performance

39 [rv, rs] = test(policy , params);

40 res = [res rv];

41 stats = [stats; rs];

42

43 % Determine game values

44 gval = fgame(basis , policy , params)';

45 tempv = beta.ˆgval;

46

47 % Update weights

48 for i = 1:boards

49 W(i,:) = weights(i,:) .* tempv(i,:);

50 weights(i,:) = W(i,:)/sum(W(i,:));

51 end

52 end

53 res = reshape(res, [boards , T])';

54 end

55

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57 % Function to Test Current Policy Performance %

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 function [V1, stats_ave] = test(policy , params)

60

61 P = policy;

62

63 M = 100;

64 for m = 1:M

65 % Run simulator with current policy

66 [val, stats] = simulate(getStartState(params), params , P);

67 if m == 1

68 stats_ave = stats;

69 V1 = val;
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70 else

71 stats_ave = stats_ave + stats;

72 V1 = V1 + val;

73 end

74 end

75 % Estimate game value and statistics

76 V1 = V1/M;

77 stats_ave = stats_ave/M;

78

79 end

80

81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

82 % Function to Determine Game Value %

83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84 function V = fgame(policy1 , policy2 , params)

85

86 % Play each basis policy

87 M = 100;

88 for i = 1:size(policy1 ,1)

89 P(:,:) = policy1(i,:,:);

90 for m = 1:M

91 val = simulate(getStartState(params), params , P);

92 if m == 1

93 V1(i,:) = val';

94 else

95 V1(i,:) = V1(i,:) + val;

96 end

97 end

98 end

99 V1 = V1/M;

100

101 % Play mixed policy

102 P = policy2;

103 M = 100;

104 for m = 1:M

105 val = simulate(getStartState(params), params , P);

106 if m == 1

107 V2 = val;

108 else

109 V2 = V2 + val;

110 end

111 end
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112 V2 = V2/M;

113

114 % Determine game value

115 V = ((repmat(V2, (size(V1)./size(V2)))-V1)+2)/4;

116 end

117

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119 % Function to Initialise Parameters for Road Example %

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

121 function params = setParams(terrain)

122 gamma = 0.99;

123 NUMLANES = 5;

124 DISTROAD = 5;

125 T = 50;

126 M = 50;

127 MAXSTATES = prod([NUMLANES , DISTROAD , (DISTROAD+1)ˆNUMLANES]);

128 MAXACT = 3;

129 [FULL_L , FULL_W] = size(terrain);

130 params = [gamma T M MAXSTATES MAXACT NUMLANES DISTROAD

131 reshape(terrain', 1, numel(terrain)) FULL_L FULL_W];

132 end

133

134

135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

136 % Function to Select Random Start Lane %

137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

138 function s0 = getStartState(params)

139 FULL_W = params(end);

140 s0 = ceil(rand*(FULL_W));

141 end

142

143 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

144 % Function to Simulate Road Example %

145 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

146 function [mu, state , actions , stats , params] =

147 simulate(s0, params , policy)

148

149 gamma = params(1);

150 T = params(2);

151 NUMLANES = params(6);

152 DISTROAD = params(7);

153 FULL_L = params(end -1);
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154

155 % Initialise road and cars

156 roadtemp = zeros(DISTROAD , NUMLANES);

157 road = roadtemp;

158 lane = s0;

159 dist = 1;

160 fpos = 1;

161 cars = zeros(1, NUMLANES);

162 tcars = num2cell(cars+1);

163 tslane = ones(1, NUMLANES)*(DISTROAD+1);

164 state = sub2ind([NUMLANES , DISTROAD , tslane],

165 lane , dist , tcars{:});

166 actions = [];

167 stats = zeros(FULL_L/DISTROAD , NUMLANES+1);

168

169 for i = 1:T

170 % Move along road

171 road = [zeros(1, NUMLANES); road(1:DISTROAD -1, :)];

172 % Generate new cars

173 o_cars = cars;

174 if (rand > 0.5)

175 k = ceil(rand*NUMLANES);

176 road(1, k) = 1;

177 end

178 [ig, cars] = max(flipud(road));

179 cars = DISTROAD + 1 - cars;

180 cars(ig == 0) = 0;

181 o_lane = lane;

182

183 % Calculate current region of terrain

184 frame = ceil(fpos / DISTROAD);

185

186 % Apprentice policy

187 tcars = num2cell(o_cars+1);

188 tslane = ones(1, NUMLANES)*(DISTROAD+1);

189 st = sub2ind([NUMLANES , DISTROAD , tslane],

190 lane , dist , tcars{:});

191 r = rand;

192 act = 0;

193 while r > 0

194 act = act + 1;

195 if ndims(policy) == 3
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196 r = r - policy(frame , st, act);

197 else

198 r = r - policy(st, act);

199 end

200 end

201 lane = lane + act - 2;

202 lane = min(max(lane , 1), NUMLANES);

203

204 % Record state

205 tcars = num2cell(cars+1);

206 tslane = ones(1, NUMLANES)*(DISTROAD+1);

207 st = sub2ind([NUMLANES , DISTROAD , tslane],

208 lane , dist , tcars{:});

209 state = [state; st];

210 actions = [actions; (lane -o_lane)+2];

211 dist = mod(dist , DISTROAD) + 1;

212 fpos = mod(fpos , FULL_L) + 1;

213

214 stats(frame , lane) = stats(frame , lane) + 1;

215 if cars(lane) == DISTROAD

216 stats(frame , end) = stats(frame , end) + 1;

217 end

218 end

219

220 % Compute feature vector

221 mu = zeros(size(features(state(1), params , 0)));

222 for t = 0:length(state)-1

223 mu = mu + gammaˆ(mod(t, DISTROAD))

224 *features(state(t+1), params , t);

225 end

226

227 % Determine value used to calculate game value

228 val = (sum(mu')+(T)/(FULL_L/DISTROAD ))/(2*T/(FULL_L/DISTROAD));

229

230 end

231

232

233 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

234 % Function to Compute Feature Vector for Road Example %

235 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

236 function ft = features(state , params , fpos1)

237
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238 NUMLANES = params(6);

239 DISTROAD = params(7);

240 FULL_L = params(end -1);

241 FULL_W = params(end);

242 terrain = params(8:end -2);

243 terrain = reshape(terrain , FULL_W , FULL_L)';

244 fpos = ceil((mod(fpos1 , FULL_L)+1)/ DISTROAD)-1;

245

246 tslane = ones(1, NUMLANES)*(DISTROAD+1);

247 cpos = num2cell(zeros(1,NUMLANES));

248 [lane , dist , cpos{:}] =

249 ind2sub([NUMLANES , DISTROAD , tslane], state);

250 % Reward lane use

251 ft = [zeros(1, NUMLANES) 0.5];

252 ft(lane) = terrain((fpos*DISTROAD)+dist , lane);

253 % Penalise collisions

254 if cpos{lane} == DISTROAD+1

255 ft(NUMLANES+1) = -1;

256 end

257

258 out = zeros(FULL_L/DISTROAD , NUMLANES+1);

259 out(fpos+1,:) = ft;

260 ft = out;

261

262 end
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Policy Performance Results

Road 1 Road 2 Road 3 Road 4 Road 5 Road 6

Composite 0.4009 0.2860 0.2860 0.3289 0.3116 0.1200

Primitive 1 0.4767 0.5473 0.4844 0.5251 0.5044 0.3604

Primitive 2 0.4033 0.5118 0.5153 0.4942 0.5089 0.2349

Primitive 3 0.4122 0.5511 0.5311 0.5111 0.5227 0.1871

Primitive 4 0.4198 0.3771 0.6384 0.3647 0.6331 0.1913

Primitive 5 0.4089 0.6531 0.3609 0.6544 0.3660 0.3493

Primitive 6 0.4198 0.5056 0.5116 0.5011 0.5089 0.3402

Primitive 7 0.4153 0.8664 0.1396 0.8791 0.1451 0.5096

Primitive 8 0.4196 0.1647 0.8616 0.1564 0.8713 0.3989

Road 7 Road 8 Road 9 Road 10 Road 11

Composite 0.0389 0.0856 0.2351 0.3960 0.2493

Primitive 1 0.2893 0.4689 0.4944 0.5702 0.4820

Primitive 2 0.1418 0.2862 0.3347 0.4682 0.3504

Primitive 3 0.2140 0.4176 0.4196 0.4687 0.3422

Primitive 4 0.1142 0.2284 0.2229 0.4487 0.3647

Primitive 5 0.1149 0.2427 0.4300 0.4900 0.3782

Primitive 6 0.0396 0.0660 0.2487 0.4891 0.4231

Primitive 7 0.4198 0.6038 0.7433 0.6149 0.5764

Primitive 8 0.3958 0.6129 0.4224 0.6367 0.5756

Table C.1: Policy Accuracy Results

76
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Road 1 Road 2 Road 3 Road 4 Road 5 Road 6

Composite 0.0093 0.0380 0.0353 0.0413 0.0400 0.0227

Primitive 1 0.0149 0.0091 0.0118 0.0122 0.0140 0.0098

Primitive 2 0.0109 0.0098 0.0124 0.0100 0.0127 0.0104

Primitive 3 0.0582 0.0471 0.0547 0.0500 0.0522 0.0531

Primitive 4 0.0111 0.0093 0.0096 0.0091 0.0087 0.0091

Primitive 5 0.0093 0.0124 0.0082 0.0102 0.0093 0.0102

Primitive 6 0.0476 0.0604 0.0569 0.0578 0.0571 0.0533

Primitive 7 0.0542 0.0593 0.0558 0.0547 0.0607 0.0533

Primitive 8 0.0467 0.0573 0.0580 0.0591 0.0580 0.0489

Road 7 Road 8 Road 9 Road 10 Road 11

Composite 0.0249 0.0460 0.0482 0.0149 0.0227

Primitive 1 0.0098 0.0120 0.0144 0.0107 0.0149

Primitive 2 0.0158 0.0133 0.0089 0.0120 0.0118

Primitive 3 0.0516 0.0516 0.0567 0.0553 0.0509

Primitive 4 0.0087 0.0111 0.0118 0.0127 0.0093

Primitive 5 0.0093 0.0122 0.0098 0.0080 0.0153

Primitive 6 0.0558 0.0591 0.0627 0.0576 0.0551

Primitive 7 0.0480 0.0582 0.0509 0.0518 0.0569

Primitive 8 0.0529 0.0558 0.0560 0.0567 0.0549

Table C.2: Policy Collision Results


